期刊文献+

基于多小波变换的GPR图象去噪方法研究 被引量:16

Study on Methods of GPR Image De-noising Based on Multi-wavelets Transform
下载PDF
导出
摘要 探讨了多小波函数及其预处理方法对探地雷达(ground penetrating radar—GPR)图象去噪性能的影响,在Donoho D L和Johnstone I M提出的小波阈值去噪方法的基础上提出了一个改进的阈值函数,并对实际的GPR图象进行阈值化处理和对比分析,结果表明选取合适的预处理方法,采用DGHM和STT多小波对GPR图象去噪可获得比其他方法更好的效果。 The influence on ground penetrating radar (GPR) image de-noising with the multi-wavelets pre-processing methods and multi-wavelet function is discussed and investigated. A novel thresholding function is presented based on the wavelet shrinkage put forward by Donoho D L and Johnstone I M, and the processing by using an improved thresholding function is analyzed and compared. The results of simulation experiment indicate that the de-noising effect of GPR image with DGHM and STT multi-wavelets based on proper pre-processing methods is better than those traditional methods.
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2005年第4期855-858,862,共5页 Journal of System Simulation
基金 教育部博士基金资助(20030290003) 山东省自然科学基金资助(Y2002G08)。
关键词 多小波变换 探地雷达 图象去噪 预滤波 阈值函数 multi-wavelet transform ground penetrating radar (GPR) image de-noising pre-filter thresholding function
  • 相关文献

参考文献16

  • 1赵瑞珍,宋国乡,王红.小波系数阈值估计的改进模型[J].西北工业大学学报,2001,19(4):625-628. 被引量:101
  • 2Donoho D L, Johnstone I M. Ideal spatial adaptation via wavelet shrinkage [J]. Biometrika, 1994, 81: 425-455.
  • 3Donoho D L. De-noising by soft-thresholding [J]. IEEE Trans.on Information Theory, 1995, 41(3): 613-627.
  • 4Donoho D L, Johnstone I M. Adapting to unknown smoothness via wavelet shrinkage [J]. Journal of American Stat Assoc, 1995, 12(90): 1200-1224.
  • 5Geronimo G S, Hardin D P, Massopust P R. Fractal Function and wavelet expansions based on several scaling functions [J]. J.Approx. Theory, 1994, (78): 373-401.
  • 6Donovan G C, Geronimo G S, Hardin D P, et al. Construction of Orthogonal Wavelets Using Fractal Interpolation Function [J]. SIAM. Math.Anal., 1996, 27(4): 1158-1192.
  • 7Strang G, Strela V. Short Wavelets and Matrix Dilation Equations [J]. IEEE Trans.on SP., 1995, 43(1): 108-115.
  • 8Chui C K, Lian J A. A study of orthonormal multi-wavelets [J]. Appl. Numer. Math., 1996, 20(3): 273-298.
  • 9Shen L.X, et al. Symmetric and antisymmetric orthonormal multiwavelets and related scalar wavelets [J]. Appl. Comput. Harmon. Anal, 2000, 8(5): 258-279.
  • 10Mariantonia Cotronei, Laura B Montefusco, Luigia Puccio. Multi-wavelet analysis and signal processing [J]. IEEE Trans.on Circuits and Systems-Ⅱ:Analog and Digital Signal Processing, 1998, 45(8): 970-987.

二级参考文献6

  • 1Mallat S,IEEE Trans PAMI,1992年,14卷,7期,710页
  • 2Daubechies. Ten Lectures on Wavelets[M]. USA, Philadelphia, SIAM, 1992.
  • 3Goodman T N T, Lee S L. Wavelets of Multiplicity r[J]. Trans. on Amer. Math. Soc., 1994, 342: 307-324.
  • 4Xia X G, Geronimo J S, Hardin Douglas P, et al. Design of Prefilters for Discrete Multiwavelet Transforms[J]. IEEE Trans. on Signal Processing, 1996, 44(1): 25-34.
  • 5Donoho D L, Johnstone I M. Ideal Spatial Adaptation Via Wavelet Shrinkage[J]. Biometrika, 1994, 81:425-455.
  • 6Strela V, Heller P N, Topiwala P, et al., The Application of Multiwavelet Filter Banks to Image Processing[J]. IEEE Trans. on Image Processing, 1999, 8 (4): 548-563.

共引文献113

同被引文献130

引证文献16

二级引证文献213

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部