期刊文献+

基于ICA算法的事件相关电位的消噪与提取

Denoising and Extraction of ERP Based on ICA Algorithm
下载PDF
导出
摘要 文章介绍了独立分量分析(IndependentComponentAnalysis,ICA)的基本理论及扩展信息最大(ExtendedInfo-max)ICA算法,并将该算法应用于多道单次事件相关电位(Single-trialEventRelatedPotential,SERP)的消噪中。实验结果表明,采用该算法成功地消除了SERP中的眼电(Electrooculographic,EOG)、肌电、α波、μ波等噪声,随后结合平均技术,实现了微弱的多道事件相关电位(EventRelatedPotential,ERP)在强噪声中的有效提取. In this paper,the basic theory and algorithm of ICA are introduced,and then the extended imfomax ICA al-gorithm is applied to the denoising of multichannel Single-trial event related potential data.The experimental results show that ICA can successfully remove the artifacts such as EOG,muscle artifacts,αwaves,μwaves,subsequently,the artifact-free weak ERP signals can efficiently be extracted from strong artifacts activities with averaging method.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第11期193-195,223,共4页 Computer Engineering and Applications
基金 国家自然科学基金资助项目(编号:60071023) 安徽省自然科学基金项目(编号:0043214)
关键词 独立分量分析 单次事件相关电位 消噪 提取 ICA,SERP,denoising,extraction
  • 相关文献

参考文献6

  • 1杨福生,洪波,唐庆玉.独立分量分析及其在生物医学工程中的应用[J].国外医学(生物医学工程分册),2000,23(3):129-134. 被引量:58
  • 2吴小培,冯焕清,周荷琴,王涛.独立分量分析及其在脑电信号预处理中的应用[J].北京生物医学工程,2001,20(1):35-37. 被引量:32
  • 3Makeig et al. Dynamic brain sources of visual evoked responses[J].Science, 2002; 295 (5555): 690~694.
  • 4Comon P.Independent component analysis-a new concept?[J].Signal Processing, 1994; 36 ( 3 ): 287~314.
  • 5Lee T W et al. Independent component analysis using an extended infomax algorithm for mixed Subgaussian and Supergaussian source[J].Neural Computation, 1999; 11 (2) :409~433.
  • 6Bell A J,Sejnowski T J.An information maximization approach to blind separation and blind deconvolution[J].Neural Computation,1995 ;7(6): 1129~1159.

二级参考文献13

  • 1John R.Hughes 马仁正译.临床实用脑电图学[M].北京:人民卫生出版社,1997.189.
  • 2刘琚.利用ICA方法对线形混叠的生物医学信号进行盲提取.99’中国生物医学电子学学术年会论文集[M].,.155-156.
  • 3Hyvarinen A.Fast and robust fixed-point algorithm for independent component analysis[].IEEE Transactions on Neural Networks.1999
  • 4Amari SI,Cichocki AC.Adaptive blind signal processing-Neural network approaches[].Proceedings of the IEEE.1998
  • 5Cardoso JF.Blind signal processing[].Proceedings of the IEEE.1998
  • 6Cardoso JF.Higher order contrasts for independent component analysis[].Neural Computation.1999
  • 7Amari SI.Natural gradient works effciently in learning[].Neural Computation.1998
  • 8Cichocki A,Unbehanen R,Rummert E.Robust learning algorithm for blind separation of sources[].Electronics Letters.1994
  • 9Lee TW,Amari SI,Cichocki AC.Independent component analysis using an extended infomax algorithm for mixed sub-Gaussian and super -Gaussian sources[].Neural Computation.1999
  • 10Cardoso JF,Laheld BH.Equivariant adaptive source separation[].IEEE Transactions on Signal Processing.1996

共引文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部