期刊文献+

Durrmeyer-Bernstein算子的L_p饱和等价定理

L_p-saturation Theorem for Durrmeyer-Bernstein Operators
下载PDF
导出
摘要 讨论了DurrmeyerBernstein算子Dn(f,x)在Lp空间的饱和问题.在处理线性算子逼近的饱和问题时,通常采用“抛物线技巧、Fourier技巧和积分方程技巧”,本文引入双线性泛函:An(f,φ)=(n+1)∫10(Dn(f,x)-f(x))φ(x)dx,利用积分方程技巧得出该算子在Lp[0,1]关于阶{1/n}和平凡类T={f|f=const(a.e)}是Lp饱和的. The saturation problem of the Durrmeyer-Bernstein operator D_n(f,x) in L_p space is discussed. To deal with the saturation problem of approximation of linear operators, parabola skill, Fourier skill and integral equation skill are usually used. In this paper, a twin-line-function is introduced as follows:A_n(f,φ)=(n+1)∫1_0(D_n(f,x)-f(x))φ(x)dx. By using the integral equation skill, the saturation order of the Durrmeyer-Bernstein operator in L_p[0,1] is obtained with respect to the order {1/n} and trivial species T={f|f=const(a.e.)}.
作者 吴雁
出处 《烟台大学学报(自然科学与工程版)》 CAS 2005年第2期98-103,共6页 Journal of Yantai University(Natural Science and Engineering Edition)
基金 空军装备部基金资助项目(KJ04281) 烟台大学青年基金资助项目(SXO4Z7).
关键词 Dumneyer—Bernstein算子 积分方程技巧 饱和性 Durrmeyer-Bernstein operators integral equation skill saturative
  • 相关文献

参考文献8

  • 1Zhang zhengqiu. On weighted approximation by Bernstein-Durrmeyer operators[J]. J Approx Theory and its Appl,1991,7(2):51~54.
  • 2Derriennic M M. Sur 1'approximation de functions integrable sur [0,1] par des polynomes de Berstein modifies[J].J Approx Theory, 1981,31:325~343.
  • 3陈文忠,古四毛.修正Durrmeyer-Bernstein算子的L_p逼近[J].Journal of Mathematical Research and Exposition,1994,14(1):129-134. 被引量:6
  • 4张璞,曹飞龙,徐宗本.Orlicz空间中的多元光滑模及其应用(英文)[J].数学进展,2003,32(6):695-705. 被引量:4
  • 5Ditzian Z, Ivanov K. Bernstein type operators and their derivatives[J]. J Approx Theory,1989,56:72~83.
  • 6Guo shusheng. On the rate of convergence of the Durrmeyer operators for functions of bounded variation[J]. J Approx Theory,1987,51:183~189.
  • 7Chen Wenzhong, Chui Zheniu. The Lp-saturation of mixed exponential type integral operator[J]. J Math Res and Exprosition,1993,13(1):61~69.
  • 8Ditzian Z, May C P. Lp saturation and invese theorem for modified Bernstein polynomials[J]. Indiana Univ Math J,1976,25:733~751.

二级参考文献6

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部