摘要
在用待定系数法求矩阵指数eA时, 其中bj是方程组 (i=1,2,…,n)的解,而λi是A的特征值。本文证明了当A为实矩阵,且λi≠λj(i≠j,i,j=1,2,…,n),时,bj是唯一的且是实数;并进一步证明了,任给复域上的共轭复数λi,且λi≠λj(i≠j,i,j=1,2,…,n),上述方程组的解bj仍是实数。
When an exponential of a matrix eA is solved for by the Method of undetermined coefficient, eA, Where (b0b1…n-1)T is the solution to the group of equations eλi=(i=1,2…,n) with λi being eigenvalues of the matix A. It is presented that when the matric A is real and λi≠λj (i≠j,i,j=1,2,…,n),bj is only and real. And it is also presented that when λis are conjugste and λi≠λj(i≠j,i,j=1, 2,…,n),the solution to the previous group of equations (b0b1…bn-1)T is still real.
出处
《振动.测试与诊断》
EI
CSCD
1994年第2期14-19,共6页
Journal of Vibration,Measurement & Diagnosis
关键词
实矩阵指数
待定系数法
方程组解
exponential of a real matrix
method of undetermined coefficients
solution to a group of equations