期刊文献+

多层耦合约化维度量子体系中的界面光学声子模及其与电子的相互作用(英文)

Interface optical phonon modes and their interactions with electron in coupling quantum systems
下载PDF
导出
摘要 采用传递矩阵方法,在介电连续近似下,推导并给出了n层耦台约化维度量子体系(包括耦合量子阱CQW, 耦合量子阱线CQWW和耦合量子点CQD)中的界面光学声子模与相应的电子-声子相互作用哈密顿的统一表达式。对由二层AlGaAs/GaAs构成的CQW,CQWW与CQD进行了数值计算,并对界面光学声子频率对体系的波矢与量子数的信赖关系进行了分析,特别是对波矢与量子数趋于0与无穷大两个极端情况从数学与物理上进行了合理的解释与说明。 By using the transfer matrix method, within a framework of the dielectric continuum (DC) approximation, uniform descriptions for the interface optical (IO) phonon modes as well as the corresponding electron-IO phonon interaction Hamiltonians in n-layer coupling reduced-dimensionality systems (including the coupling quantum well (CQW), coupling quantum-well wire (CQWW) and coupling quantum dot (CQD) have been presented. Numerical calculations on a three-layer AlGaAs/GaAs systems placed in vacuum are performed, and the dependences of the IO phonon frequencies on the wave-vector or the quantum number in these systems are presented. Especial for the case of that the wave-vector or the quantum number approach 0 and infinity, reasonable explanations from the viewpoints of mathmetics and physics are given, respectively.
作者 张立
出处 《量子电子学报》 CAS CSCD 北大核心 2005年第2期243-250,共8页 Chinese Journal of Quantum Electronics
关键词 光电子学 耦合约化维度量子系统 传递矩阵方法 电子-声子相互作用 凝聚态 optoelectronics reduced-dimensionality quantum systems transfer matrix method electron-phonon interaction condensed matter
  • 相关文献

参考文献16

  • 1Mori N, Ando T. Electron-optical-phonon interaction in single and double heterostructures [J]. Phys. Rev. B,1989, 40: 6175.
  • 2Shi J J, Pan S H. Polar optical oscillations in coupled quantum wells: the electron-phonon interaction and scattering [J]. J. Appl. Phys., 1996, 80: 3863.
  • 3ZhangL XieHJ.Polar optical phonon oscillation in an n-layer coupling quantum well: the Frohlich electronphonon interaction hamiltonians .Chinese Journal of Quantum Electronics (量子电子学报),2003,20(6):699-699.
  • 4Kim K W, Strosicio M A, Bhatt A, et al. Electron-optical-phonon scattering rates in a rectangular semiconductor quantum wire [J]. J. Appl. Phys., 1991, 70: 319.
  • 5Xie H J, Chen C Y, Ma B K. The bound polaron in a cylindrical quantum well wire with a finite confining potential [J]. Phys. Rev. B, 2000, 61: 4827; Bound polaron in a cylindrical quantum wire of a polar crystal [J].J. Phys.: Condens. Matter, 2000, 12: 8623.
  • 6Zhang L, Xie H J. Frohlich electron-interface and -surface optical phonon interaction Hamiltonian in multilayer coaxial cylindrical AlxGa1_xAs/GaAs quantum cables [J]. J. Phys. Condens. Matter, 2003, 15: 5881.
  • 7Zhang L, Xie H J, Chen C Y. The Frohlich electron-phonon interaction Hamiltonian in a quantum dot quantum well [J]. Phys. Rev. B, 2002, 66: 205326.
  • 8Fuchs R, Kliewer K L. Optical modes of vibration in an ionic crystal slab [J]. Phys. Rev. A, 1965, 140: 2076.
  • 9Licari J, Evrard R. Electron-phonon interaction in a dielectric slab: effect of the electronic polarizability [J]. Phys.Rev. B, 1977, 15: 2254.
  • 10Suenaga K, Colliex C, Demoncy N, et al. Synthesis of nanoparticles and nanotubes with well-separated layers of boron nitride and carbon [J]. Science, 1997, 278: 653.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部