期刊文献+

关联规则技术在电力市场营销分析中的应用 被引量:23

Application of Association Rules Techniques in Electric Marketing Analysis
下载PDF
导出
摘要 关联规则是一种重要的数据挖掘技术。结合电力行业的特殊性,将关联规则应用于对电力市场营销分析中。采取K-Means聚类技术实现对历史数据的离散化处理,以便进行知识归纳,运用关联规则的FP-Growth算法搜索所有的强关联规则,这些强关联规则中蕴含着电量销售与电价、气温、降水等影响因素之间的关联关系。以某市的实际电力营销数据为例,说明了关联规则的分析方法对电力市场营销具有一定的辅助决策意义。 Association rules is an important method of data mining techniques. Considering the characteristics of power system, association rules method is applied to the electric marketing analysis.The clustering method of K-Means is used to generalize the original data in order to integrate the information. The FP-Growth algorithm is proposed to find all of the strong association rules, which reveal the relation between electric sale and influencing factors such as price, temperature and precipitation. According to the practical example of a certain city, the association rules method is proved helpful in aided decision-making for electric marketing.
出处 《电力系统及其自动化学报》 CSCD 北大核心 2005年第2期67-72,共6页 Proceedings of the CSU-EPSA
关键词 电力市场营销 数据挖掘 关联规则 频繁模式增长算法 electric marketing data mining association rules FP-Growth algorithm
  • 相关文献

参考文献10

二级参考文献44

  • 1Jiaweihan Michelinekambr.数据挖掘[M].北京:高等教育出版社,2001..
  • 2盛聚 等.概率论与数理统计[M].北京:高等教育出版社,1991..
  • 3王清毅 范焱 邹翔 蔡庆生.基于数据聚类的关联规则挖掘方法研究[J].南京大学学报(自然科学版,计算机专辑),2000,36(11):64-69.
  • 4[1]Usama Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth,Ramasamy Uthurusamy,editors. Advances in Knowledge Discovery and Data Mining[M].AAAI Press/The MIT Press,1996
  • 5[2]Gregory Piatesky-Shapiro,William J Frawley,editors. Knowledge Discovery in Databases[M].AAAI Press,1991
  • 6[3]http://www.mis.ccu.edu.tw/jcwang/mis.htm
  • 7[4]R Agrawal,T Imielinski,A Swami. Mining association rules between sets of items in large databases[C].Proceedings of the ACM SIGMOD Conference on Management of Data,Washington D.C,1993.5
  • 8[5]Usama M Fayyad,Gregory Piatesky-Shapiro,Padhraic Smyth. Knowledge discovery and Data Mining[C].In:Proceedings of the Second In ternational Conference on Knowledge Discovery and Datamining,AAAI Press, 1996
  • 9[6]Srikant R,Agrawal R. Mining quantitative association rules in large relational tables[C].Proceedings of the ACM SIGMOD Conference on Management of Data, 1996
  • 10[7]Rakesh Agrawal,Bamakrishnan Srikant. Fast Algorithms for Mining Association Rules[C].Proceedings of the 20th VLDB Conference,1994

共引文献298

同被引文献155

引证文献23

二级引证文献155

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部