摘要
关联规则是一种重要的数据挖掘技术。结合电力行业的特殊性,将关联规则应用于对电力市场营销分析中。采取K-Means聚类技术实现对历史数据的离散化处理,以便进行知识归纳,运用关联规则的FP-Growth算法搜索所有的强关联规则,这些强关联规则中蕴含着电量销售与电价、气温、降水等影响因素之间的关联关系。以某市的实际电力营销数据为例,说明了关联规则的分析方法对电力市场营销具有一定的辅助决策意义。
Association rules is an important method of data mining techniques. Considering the characteristics of power system, association rules method is applied to the electric marketing analysis.The clustering method of K-Means is used to generalize the original data in order to integrate the information. The FP-Growth algorithm is proposed to find all of the strong association rules, which reveal the relation between electric sale and influencing factors such as price, temperature and precipitation. According to the practical example of a certain city, the association rules method is proved helpful in aided decision-making for electric marketing.
出处
《电力系统及其自动化学报》
CSCD
北大核心
2005年第2期67-72,共6页
Proceedings of the CSU-EPSA