期刊文献+

序有界模糊n-方体数集的上确界与下确界(英文) 被引量:1

Supremum and Infimum of Order Bounded Sets of Fuzzy n-cell Numbers
下载PDF
导出
摘要 本文中,我们讨论了在定义模糊n-方体数值映射的某种类型的积分时要用到的序有界模糊n-方体数集的上确界与下确界的问题。我们证明了序有界模糊n-方体数集的上、下确界的存在性。 In this paper, we discuss the problems of supremum and infimum of order bounded sets of fuzzy n-cell numbers, that is useful in the definition of some kind of integral about fuzzy n-cell number value (mappings.) We show the existence of supremum and infimum, and give out the expressions of supremum and infimum about order bounded sets of fuzzy n-cell numbers.
出处 《模糊系统与数学》 CSCD 北大核心 2005年第1期100-105,共6页 Fuzzy Systems and Mathematics
关键词 模糊数 模糊n-方体数 嵌入定理 上确界 下确界 Fuzzy Number Fuzzy n-cell Number Embedding Theorem Supremum Infimum
  • 相关文献

参考文献16

  • 1Butnariu D. Measurability concepts for fuzzy mappings[J]. Fuzzy Sets and Systems,1989,31:77-82.
  • 2Chang S S L,Zadeh L A. On fuzzy mapping and control[J]. IEEE Trans.Systems Man Cybert.,1972,2(1): 30-34.
  • 3Diamond P,Kloeden P. Metric spaces of fuzzy sets[M]. Singapore:World Scientific,1994.
  • 4Dubois D,Prade H. Towards fuzzy differential calculus-Part 1[J]. Fuzzy Sets and Systems,1982,8:1-17.
  • 5Dubois D,Prade H.Towards fuzzy differential calculus-Part 2[J].Fuzzy Sets and Systems,1982,8:105-116.
  • 6Dubois D,Prade H.Towards fuzzy differential calculus-Part 3[J].Fuzzy Sets and Systems,1982,8:225-234.
  • 7Kaleva O. Fuzzy differential equations[J]. Fuzzy Sets and Systems,1987,24:301-317.
  • 8Kaleva O.The cauchy problem for Fuzzy differential equations[J].Fuzzy Sets and Systems,1990,35:389-396.
  • 9Puri M L,Ralescu D A. Differential for fuzzy functions[J]. J. Math. Anal. Appl.,1983,91:552-558.
  • 10Puri M L,Ralescu D A. Fuzzy random variables[J]. J. Math. Anal. Appl.,1986,114:409-422.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部