期刊文献+

基于焦点和角度的多维索引方法 被引量:2

An Efficient Indexing Method for Multi-Dimensional Data Based on Foci and Angles
下载PDF
导出
摘要 多维索引方法的算法非常复杂且难于实现,有时算法的复杂程度和其性能的提高是不相匹配的.为此,作者提出了一种基于焦点和角度的多维索引结构.基本思想是在对象空间选出焦点集,通过计算得到中心焦点、基本向量集和FAC_坐标.在检索时,通过估计结果集内数据点与基本向量的夹角范围来实现对数据点的过滤.这种索引方法的最大优点是索引文件较小,所需的存储空间小.因而,这种方法能够更好的适应于维数和数据集的增长.此索引结构与Omni_顺序扫描算法的过滤效率通过实验进行了对比,实验数据验证了该索引方法的有效性. Many indexing approaches for multi-dimensional data have evolved into very complex algorithms which are hard to implement. Motivated by this situation, the authors propose a simple yet efficient indexing method for multi-dimensional data which is based on foci and angles. The basic idea is to select a set of objects as foci. And the central focus, the basic vectors and FAC-coordinates can be got by computing. We can filter data objects by estimating the range of angles which are belonged in results set when we retrieve. The strongest point of this method is the small size of indexing file because the angles which are independent of dimensions need small storage space. So this method scales well for growing dimensions and database size as well as easy to implement. The results of experiments show us the efficiency of this method.
作者 梁晔 须德
出处 《北京交通大学学报》 EI CAS CSCD 北大核心 2005年第2期22-25,共4页 JOURNAL OF BEIJING JIAOTONG UNIVERSITY
关键词 多维索引结构 复杂程度 基本思想 中心焦点 基本向量 索引文件 存储空间 过滤效率 扫描算法 数据验证 数据点 相匹配 象空间 向量集 数据集 实验 video database image retrieval high-dimensional access method range query similarity search
  • 相关文献

参考文献6

  • 1Gaede V, Gunther O. Multidimensional Access Methods[J]. ACM Computing Surveys, 1998,30(2), 170 - 231.
  • 2Manuel J, Fonseca, Joaquim Jorge. Indexing High-Dimensional Data for Content-Based Retrieval in Large Databases[A]. Proceedings of the 8th International Conference on Database Systems for Advanced Application(DASFAA' 03)[C]. Mar, 2003.
  • 3Guang-Ho Cha, Xiaoming Zhu, Dragutin Petkovie. An Efficient Indexing Method for Nearest Neighbor Searches in High-Dimensional Image Databases[A]. IEEE[ C]. 2002,4(1):76-87.
  • 4Weber R, Schek H-J, Blott S. A Quantitative Analysis and Performance Study for Similarity-Search Methods in High-Dimensional Spaces[ A]. In Proc. of 24th VLDB Conf. [C]. 1998. 194 - 295.
  • 5Roberto Figueira Santos Filho, Agma Traina, Caetano Traina Jr, et al. Similarity Search without Tears: the OMNI-Family of All-Purpose Access Methods [A]. The17th International Conference on Data Engineering[ C].April, 2001. 623 - 630.
  • 6HectorGarcia-Molina 杨冬青 唐世渭 徐其钧 译.数据库系统实现[M].北京:机械工业出版社,2001.18.

共引文献4

同被引文献9

  • 1曲吉林,寇纪淞,李敏强.图像检索中索引技术研究[J].情报科学,2006,24(4):579-583. 被引量:3
  • 2王飞龙.基于内容图像检索中索引技术的研究[D].上海海事大学,2008.
  • 3Guttman A.R-Tree:A Dynamic Index Structure for Spatial Searching[R].In Proc.of the ACM SIGMOD Intl.Conf.on Management of Data,1984:47-54.
  • 4GH.Cha,X.Zhu,D.Petkovic.et al.An Efficient Indexing Method for Nearest Neighbor Searches in High-Dimensional Image Databases[J].IEEE Trans.Multimedia,Mar,2002.
  • 5Rbruneli O Mich.On the use of histograms for image retrieval[J].IEEE International Conference on Multimedia Computing and Systems,1999,(2):143~147
  • 6V Gaede,O Gunther.Multidimensional Access Methods[J].ACM Computing Surveys,1998,30(2):170~231
  • 7Weber R,Schek H-J,Blott S.A Quantitative Analysis and Performance study for Similarity-search Methods in Highidimensional Spaces[C].In:Proc of 24th VLDB Conf,1998:194~295
  • 8Roberto Figueira Santos Filho,Agma Traina,Caetano Traina Jr et al.Similarity Search without Tears:the OMNI-Family of All-Purpose Access Methods[C].In:17th International Conference on Data Engineering,2001:623~630
  • 9庄越挺,潘云鹤,芮勇,ThomasS.Huang.基于内容的图像检索综述[J].模式识别与人工智能,1999,12(2):170-177. 被引量:54

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部