期刊文献+

有限域F(2^163)上ECDSA算法研究与实现 被引量:3

Research and Implementation of ECDSA over GF(2^163)
下载PDF
导出
摘要 椭圆曲线公钥密码算法,以其独特的优越性,日益成为研究热点。文章深入探讨了关于椭圆曲线基域选取、密钥算法快速实现和椭圆曲线数字签名算法(ECDSA)等问题,并采用INFINEON公司的携带域上求模运算的加速协处理模块(DDES-EC2)的智能卡芯片SLE66CX320P,实现了基于有限域上GF(2n)密钥长度为163bits的ECDSA算法,最后经过测试,证明实现是成功的,运行是高效的。该文的研究对于实现安全性更高的长密钥算法及推广我国加密安全产品的应用有着较为实际的意义。 Elliptic curve cryptosystems over a finite field is becoming a key researching for it's unique superiority.In this paper,some theories about the selecting of the finite field for underlying field of the elliptic curve group,algorithms of the elliptic curve cryptosystems,the fast implementation and ECDSA algorithms are deeply discussed,then based on the SLE66CX320P smart card which embedded with the DDES-EC2,implements the 163bit length's ECDSA algorithms over GF(2n),at last through testing,the result shows that this system runs efficiently and correctly.This research is very useful for the implementation of the large length Elliptic Curve Cryptosystems and has a practical significance on the security product application in our country
出处 《计算机工程与应用》 CSCD 北大核心 2005年第12期41-43,共3页 Computer Engineering and Applications
关键词 椭圆曲线密码体制 ECDSA 智能卡 elliptic curve cryptosystems,ECDSA,smart card
  • 相关文献

参考文献7

  • 1Koblitz N.Elliptic Curve Cryptosystems[J].Mathematics of Computation, 1987 ;48(177) :203~209.
  • 2Schoof R.Elliptic Curve Over Finite Field and the Computation of Square Roots Mod p[J].Mathematics of Computation,1985;44(170):483~483.
  • 3IEEE Standard Specifications for Public-Key Cryptography[S].IEEE Std 1363-2000.
  • 4SEC 1.Elliptic Curve Cryptography. Standards for Efficient Cryptography Croup.Working Draft,http:∥www.secg.org.
  • 5Infineon Technologies.Security & Chip Card ICs SLE66CxxxP[M].Germany: Infineon Technologies AG, 1999:160~190.
  • 6白国强.安全椭圆曲线的类型[C].见:陈克非编.信息和通信安全-CCICS2001[C].北京:科学出版社,2001.136-139.
  • 7唐柳英,李宝.椭圆曲线密码体制实现的若干问题浅谈[J].中国科学院研究生院学报,2001,18(2):186-192. 被引量:6

二级参考文献6

  • 1[1]Alfred Menezes. Elliptic Curve Pulblic Key Cryptosystems. Kluwer Academic Publishers, 1993
  • 2[2]The Elliptic Curve Cryptosystem for Smart Cards: The Seventh in a Series of ECC White Papers. Avilable at: http://www. certicom. com
  • 3[3]Certicom. Remarks on the Security of the Elliptic Curve Cryptosystem. 1997. avilable at:http://www. certicom. com
  • 4[4]Jorge Guajardo, Christof Paar. Efficient Algorithms for Elliptic Curve Cryptosystems. In: Advances in Cryptology'97.1997. 343~ 355
  • 5[5]Erik De Win et al. A Fast Software Implementation for Arithmetic Operations in GF (2-n). In: Advances in Cryptology-Proceedings of Asias rypt'95. Lecture Notes in Computer Science. Berlin: Springer-Verlag, 1996,1163: 65 ~ 76
  • 6[6]Jerome AmSolinas. An Improved Algorithm for Arithmetic on a Family of Elliptic Curves. In: Advances In Advances in Cryptology'97.1997.356 ~ 371

共引文献5

同被引文献25

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部