期刊文献+

免疫记忆遗传算法及其完全收敛性研究 被引量:14

Research of Immune Memory Genetic Algorithm and its Complete Convergence
下载PDF
导出
摘要 指出多模态优化中现有小生境遗传算法(NGA)和简单子群遗传算法(SSGA)无法实现完全收敛。受精英个体保留策略的启示,基于免疫系统的记忆细胞机制设计了免疫记忆遗传算法(IMGA),利用马尔柯夫链为数学工具,从理论上证明了NGA不能完全收敛而IMGA能够完全收敛。选择小生境遗传算法与该文算法进行了对比仿真实验,不仅验证了理论上的完全收敛性结论,同时验证了所提算法求解多模态问题的有效性、快速收敛能力及其收敛的稳定性。 By analyzing the mechanisms of Niche Genetic Algorithm(NGA) and Simple Sub-population Genetic Algorithm(SSGA) in now multi-modal optimization fields,the fault that they cannot convergent completely are pointed out and the concept of complete convergence is proposed.A new Immune Memory Genetic Algorithm(IMGA) based on mechanism of immune cells memory is designed.Using mathematical methods of Markov chains theory,it is proven that NGA is not completely convergent but IMGA is.The simulation experiments for NGA and IMGA are performed,and the results show that complete convergence proven above is right,also testify that IMGA has availability on solving multi-modal optimization problems,quickly convergence ability and wonderful stability of search results.
出处 《计算机工程与应用》 CSCD 北大核心 2005年第12期47-50,共4页 Computer Engineering and Applications
基金 山东省教育厅科技计划项目(编号:J02F06 J04A12)基金资助
关键词 多模态优化 完全收敛 小生境遗传算法 免疫记忆 multi-modal optimization,complete convergence,niche genetic algorithm,immune memory
  • 相关文献

参考文献6

  • 1恽为民,席裕庚.遗传算法的全局收敛性和计算效率分析[J].控制理论与应用,1996,13(4):455-460. 被引量:113
  • 2Holland J H.Adaptation in natural and artificial system:an Introduction Analysis with Applications to Biology ,Control ,and Artificial Intelligence[M].USA:The University of Michigan Press,1975.
  • 3Goldberg D E, Richardson J.Genetic algorithms with sharing for multi-modal function optimization[C].In:Proceedings of the second International Conference on Genetic Algorithms ,Massachusetts Institute of Technology,Cambridge, MA, 1987:41~49.
  • 4William M Spears. Simple Sub-population Schemes[C].In :Proceedings of the Third Annual Conference on Evolutionary Programming,San Diego, California, USA, 1994: 296~307.
  • 5刘洪杰,王秀峰.多峰搜索的自适应遗传算法[J].控制理论与应用,2004,21(2):302-304. 被引量:23
  • 6G Rudolph. Convergence Analysis of Canonical Genetic Algorithms [J].IEEE Trans on Neural Networks, 1994 ;5 ( 1 ).

二级参考文献10

  • 1恽为民,博士学位论文,1995年
  • 2Qi X,IEEE Trans on Neural Networks,1994年,102页
  • 3施仁杰,马尔科夫链基础及其应用,1992年
  • 4袁天鑫,社会动态系统引论,1985年
  • 5MICHALEWICZ Z. Genetic Algorithms + Data Structures = Evolution Programs [M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
  • 6WANG Xiufeng, ELBULUK M E. The application of genetic algorithm with neural networks to the induction machines modeling [J].System Analysis Modeling Simulation, 1998,31:93- 105.
  • 7HOLLAND J H. Adaptation in Natural and Artificial System: An Introduction Analysis with Applications to Biology, Control and Artificial Intelligence [M]. Michigan, USA: The University of Michigan Press, 1975.
  • 8GOLDBERG D E, RICHARDSON J. Genetic algorithms with sharing for multimodel function optimization [C]//Proc of the Second lnt Confon Genetic Algorithms: July 28 - 31, 1987 at the Massachusetts Institute of Technology. Massachusetts, USA: The Massachusetts Institute of Technology Press, 1987:41 -49.
  • 9WILLIAM M. Spears, simple subpopulation schemes [C]//Proc of the Third Annual Conference on Evolutionary Programming, Feb. 24- 26, 1994 at San Diego, California, USA. Singapore: World Scientific, 1994:296 - 307.
  • 10刘洪杰.[D].天津:南开大学,2002.

共引文献133

同被引文献145

引证文献14

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部