期刊文献+

基于小波变换的信号去噪的应用研究 被引量:3

The application of denoising based on wavelet transform to signal
下载PDF
导出
摘要 文章指出了小波变换去噪方法与一般意义下去噪方法的不同,讨论了小波变换算法的优越性,进而提出了利用小波算法对含噪信号进行逐层分析与重构,将原始信号分解为不同频带,滤除不需要的频带,最后用Mallat重建算法得到去噪后的信号,既有效地滤除了信号噪声,又保留了信号的突变性。大量的实验结果和进一步的分析表明。 This paper points out the differences between the denoising methods using wavelet transform and the normal ones and discusses the superiority in wavelet transform algorithm Meanwhile, it brings forward that the signal with noise should be analyzed in each layer and made reconstructions by wavelet transform algorithm Thus, it can separate the original signal into signals with different bandwidth and filter the unnecessary bandwidth signals At last, the signal with no noise can be achieved through Mallat's reconstruction algorithm, which can filter the signal with noise efficiently while holding the characteristics of the original Many experiments and analyses show that it would make the system run more stably in the research on the denoising of dynamic system
作者 刘扬 王思明
出处 《电脑与信息技术》 2005年第2期29-32,共4页 Computer and Information Technology
  • 相关文献

参考文献4

  • 1程正兴.小波变换的算法及应用[M].西安:西安交通大学出版社,1998..
  • 2Papadimitriou S, Bezerianos A. Multiresolution Analysis and Denoising of Computer Performance Evaluation Data with the Wavelet Transform. Journal of Systems Architecture, 1996,42(1) z55 - 56.
  • 3Bakhtazad A, Palazoglu A, Romgholi J. Process Trend Analysis Using Wavelet -based De- noising. Control Engineering Practice, 2000,8(6), 657 - 663.
  • 4Olivier Rioul Rierre Duhamel. Fast Algorithms for Discrete and continuous Wavelet Transforms. IEEE Transactions on Information Theory, 1992,38(2) : 569 - 586.

共引文献1

同被引文献28

  • 1赵国良,杨俊春,孙珅.心电信号的小波变换消噪方法[J].哈尔滨工程大学学报,2004,25(5):631-634. 被引量:13
  • 2杨竹丰.高灵敏宽量程微电流计[J].电子测量技术,2004,27(5):57-58. 被引量:5
  • 3罗幼芝.小波变换应用于信号去噪研究[J].吉林师范大学学报(自然科学版),2005,26(1):62-64. 被引量:11
  • 4康建锋,李玲,杨丽娟,高洁.准一维电子通道中声电电流的实验研究[J].四川大学学报(自然科学版),2005,42(4):770-774. 被引量:2
  • 5杨世明,龚光华,邵贝贝,李金.BESIII剂量率在线检测和保护系统读出电子学设计[J].核电子学与探测技术,2006,26(4):434-437. 被引量:7
  • 6Shaw S,JArnold. Automated Error Detection in Multibeam Bathymetry Data. Ocean' 93, IEEE, Conference Processings, Victoria, BC,Canada, 1993:Ⅱ/89 - Ⅱ/94 vol. 2.
  • 7Lirakis C B, K P Bongiovanni. Automated Multibeam Data Cleaning and Target Detection. Oceans 2000, MTS/IEEE Conference and Exhibition, Providence, RI. USA. 2000:719-723 vol. 1.
  • 8Mann M, P Agathokils, A Antoniou. Automatic Outlier Detection in Multibeam Data using Median Filtering. Communications, Computers and Signal Processing, 2001. PACRIM. 2001 IEEE Pacific Rim Conference on, Victoria, BC, Canada, 2001: 690- 693 vol. 2.
  • 9Calder B R, L A Mayer. Robust Automatic Multibeam Bathymetric Processing. Http ://www. thsoa, org/ pdf/ h01/3_4, pdf, 2001.
  • 10[5]Donoho D L.De-noising by soft-thresholding[J].IEEE Transactions on Infonmation Theory,1995,41(3):613-627.

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部