期刊文献+

广义凸集值向量优化问题的弱有效解 被引量:2

Weak Efficient Solutions of Generalized Convex Set-Valued Vector Optimization Problems
下载PDF
导出
摘要 在序线性拓扑空间中定义了广义凸集值映射. 引进了相对内部, 应用凸集分离定理建立了一个广义凸集值映射的择一性定理. 运用此定理获得了弱有效解意义下的集值向量优化问题的最优性条件. In this paper, firstly the concept of generalized convex set-valued map is defined in ordered linear topological spaces. Then relative interior is introduced and an alternative theorem of generalized convex set-valued maps is established by using the separation theorem. And finally, the optimality conditions are obtained for set-valued vector optimization problems in a sense of weak efficient solutions by applying the theorem.
作者 周志昂
出处 《西南师范大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期221-225,共5页 Journal of Southwest China Normal University(Natural Science Edition)
关键词 集值映射 广义凸 相对内部 择一性定理 弱有效解 最优性条件 set-valued maps generalized convex relative interior alternative theorem weak efficient solutions optimality conditions
  • 相关文献

参考文献5

  • 1凌晨.拓扑向量空间中锥拟凸多目标规划锥有效解集的连通性[J].应用数学学报,2001,24(1):66-70. 被引量:3
  • 2Li Z M. A Theorem of the Alternative and Its Applications to the Optimization of Set-Valued Maps [J]. Journal of Optimization Theory and Applications, 1999, 100(2) : 365 - 375.
  • 3Huang Y W. A Farkas-Minkowski Type Alternative Theorem and Its Applications to Set-Valued Equilibrium Problems [J]. Journal of Nonlinear and Convex Analysis, 2002, 3(1): 17 - 24.
  • 4Frenk J B G, Kassay G. On Classes of Generalized Convex Functions, Gordan-Farkas Type Theorem, and Lagrangian Duality [J]. Journal of Optimization Theory and Applications, 1999, 102(2):315 - 343.
  • 5Illes T, Kassay G. Theorems of the Alternative and Optimality Conditions for Convexlike and Convexlike Programming [J]. Journal of Optimization Theory and Applications, 1999, 101(2): 243 - 257.

二级参考文献4

共引文献2

同被引文献13

  • 1Yang Xinmin, Li Duan, Wang Shouyang. Near-Subconvexlikeness in Vector Optimization with Set-Valued Functions [J]. Journal of Optimization Theory and Applications, 2001, 110(2): 413 -427.
  • 2Cheng Guangya, Rong Weidong. Characterizations of Benson Proper Efficiency for Nonconvex Vector Optimization [J]. Journal of Optimization Theory and Applications, 1998, 98(2) : 365 - 384.
  • 3Li Zemin. The Optimality Conditions for Vector Optimization of Set Valued Maps [J]. Journal of Mathematical Analysis and Applications, 1999, 237(2) : 413 - 424.
  • 4Adan M, Novo V. Weak Efficiency in Vector Optimization Using a Closure of Algebraic Type under Cone Convexlikeeness[J]. European Journal of Operational Research, 2003, 149 : 641 - 653.
  • 5Sach P H. New Generalized Convexity Notion for Set Valued Maps and Application to Vector Optimization [J]. Journal of Optimization Theory and Applications, 2005, 125(1) : 157 - 179.
  • 6Adan M, Novo V. Efficient and Weak Efficient Points in Vector Optimization with Generalized Cone Convexity [J]. Applied Mathematics Letters, 2003, 16: 221- 225.
  • 7Hernanden E, Jimenez B, Novo V. Benson Efficiency in Set-valued Optimization on Real Linear Spaces [J].Lecture Notes in Economies and Mathematical System, 2006, 563(1): 45- 59.
  • 8WEIR T, MOND B. Preinvex Functions in Multi-Objective Optimization [J]. Journal of Mathematical Analysis and Ap plications, 1988, 136(1): 29-38.
  • 9WEIR T, JEYAKUMAR V. A Class of Nonconvex Functions and Mathematical Programming [J]. Bulletin of the Aus tralian Mathematical Society, 1988, 38(2): 177-189.
  • 10MOHAN S R, NEOGY S K. On Invex Sets and Preinvex Functions [J].Journal of Mathematical Analysis and Applica tions, 1995, 189(3): 901-908.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部