期刊文献+

混合超图的染色理论 被引量:5

The Coloring Theory of Mixed Hypergraphs
下载PDF
导出
摘要 混合超图是含有两种超边的超图,一种称为D-超边,一种称为C-超边,它们的区别主要体现在染色要求上.混合超图的染色,要求每一D-超边至少有两个点染不同的颜色,每一C-超边至少有两个点染相同的颜色.用颜色最多的染色所用的颜色数称为该混合超图的上色数,用颜色最少的染色所用的颜色数称为该混合超图的下色数.混合超图的染色理论是目前国际组合学界比较新的研究课题之一.本文主要概括介绍关于混合超图染色理论已经取得的一些成果,其中包含本文作者的研究成果.并提出了一些可供进一步研究的问题. A mixed hypergraph consists of a finite set and two families of subsets: D-edges and C-edges. In a coloring, every D-edge has at least two vertices colored differently, and every C-edge has at least two vertices of the same color. The maximum and minimum numbers of colors in a coloring are called the upper and lower chromatic numbers, respectively. This paper mainly introduces the main advancements on the coloring theory of mixed hypergraphs, including some results obtained by authors. This paper also presents some problems about this theory which are valuable to future study.
出处 《数学进展》 CSCD 北大核心 2005年第2期145-154,共10页 Advances in Mathematics(China)
基金 国家自然科学基金(No.19831080 No.60172003)山东省自然科学基金(No.Z2000A02)资助
关键词 混合超图 严格染色 上色数 下色数 mixed hypergraph strict coloring upper chromatic number lower chromatic number
  • 相关文献

参考文献25

  • 1Berge C. Graphs and Hypergraphs [M]. North Holland: Amsterdam, 1973.
  • 2Berge C. Hypergraphs: Combinatorics of Finite Sets [M]. North Holland: Amsterdam, 1989.
  • 3Jensen T, Tort B. Graph Coloring Problems [M]. New York: Wiley Interscience, 1995.
  • 4Voloshin Vitaly . The mixed hypergraphs [J]. Computer Science Journal of Moldova, 1993, 1(1): 45-52.
  • 5Voloshin Vitaly. On the upper chromatic number of a hypergraph [J]. Australasian Journal of Combinatorics, 1995, 11(1): 25-45.
  • 6Jiang Tao, Mubayi Dhruv, Tuza Zsolt, Voloshin Vitaly, West Douglas B. The chromatic spectrum of mixed hypergraphs [J]. Graphs and Combinatorics, 2002, 18(3): 309-318.
  • 7Bulgaru Elena, Voloshin Vitaly. Mixed interval hypergraphs [J]. Discrete Applied Mathematics, 1997,77(1): 29-41.
  • 8Tuza Zsolt, Voloshin Vitaly. Uncolorable mixed hypergraphs [J]. Discrete Applied Mathematics, 2000,99(1): 209-227.
  • 9Colbourn C, Van Ocrschot P. Applications of combinatorial designs in computer science [J]. ACM Computing Surveys, 1989, 21(2): 223-250.
  • 10Milazzo Lorenzo, Tuza Zsolt. Upper chromatic number of Steiner triple and quadruple systems [J].Discrete Mathematics, 1997, 174(2): 247-259.

二级参考文献12

  • 1[1]Vitaly I Voloshin. On the upper chromatic number of a hypergaph[J]. Australasian Journal of Combinatorics, 1995, (11):25~45.
  • 2[2]Lorenzo Milazzo, Zsolt Tuza. Upper chromatic number of steiner triple system[J].Manuscript, 1995.
  • 3[3]Berge C. Graphs and hypergraphs[M]. North Holland, 1973.
  • 4[1]Lorenzo Milazzo,Zsolt Tuza. Upper Chromatic Number of Steiner Triple and Quadruple Systems[J]. Discrete Math. ,1997,174(1~3):247~262.
  • 5[2]Vitaly I. Voloshin. On the Upper Chromatic Number of a Hypergraph[J]. Australasian Journal of Combinatorics, 1995,11:25~45.
  • 6[3]C. Berge,Graphs and Hypergraphs[M]. North Hplland,1973.
  • 7[4]Diao Kefeng,Zhao Ping,Zhou Huishan. About the upper chromatic number of a cohypergraph[J]. Discrete Mathematics,2000,220:67~73.
  • 8Vitaly I, Voloshin. On the upper chromatic number of a hypergraph[J]. Australian Journal of Combin~orics,1995;11:25-45.
  • 9Diao K F, Zhao P, Zhou H S. About the upper chromatic number of a co-hypergraph[J]. Discrete Mathematics,2000;220:67- 73.
  • 10Berge C. Graphs and hypergraphs[M]. North Hplland,1973.

共引文献2

同被引文献19

  • 1刁科凤,禹继国.完美C-超图的一个充分条件[J].山东大学学报(理学版),2004,39(3):6-9. 被引量:1
  • 2田玉芳,何中市.多重图的线图连通度[J].重庆大学学报(自然科学版),2005,28(10):94-98. 被引量:4
  • 3刁科凤,赵平.具有最小连通点对图的C-超图的染色讨论[J].山东大学学报(理学版),2007,42(2):56-58. 被引量:1
  • 4BERGE C. Graphs hypergraphs[M]. Amsterdam: North-Holland, 1973.
  • 5VOIDSHIN V I. On the upper chromatic number of a hypergraph[J]. Austr J Conbin, 1995, 11:25-45.
  • 6TUZA Zs, VOLOSHIN V, ZHOU Huishan. Uniquely colorable mixed hypergraphs[ J]. Discrete Mathematics, 2002, 248:221-236.
  • 7[1]J.A.Bondy and U.S.R.Murty.Graph.Theory with Applications[M].the Macmillan press ltd,1976:72-75.
  • 8[2]Daniel Král.Jan Kratochvíl.Heinz-Jürgen Voss.Mixed Hypergraphs with Bounded Degree:edge-coloring of mixed multigraphs[J].Theoretical Computer Science 2003,295(1):263-278.
  • 9[1]J.A.Bondy and U.S.R.Murty.Graph.Theory with Applications[M].the Macmillan press,1976:73-79.
  • 10[2]Daniel Král.Jan Kratochvíl.Heinz-Jürgen Voss.Mixed Hypergraphs with Bounded Degree:edge-coloring of mixed multigraphs[J].Theoretical Computer Science 2003,295 (1):263-278.

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部