期刊文献+

Simulation of Rate Retardation in RAFT Polymerization of Styrene with Low RAFT-Initiator Ratio

Simulation of Rate Retardation in RAFT Polymerization of Styrene with Low RAFT-Initiator Ratio
下载PDF
导出
摘要 Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K_r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K_r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K_r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K_r is BDB<PEDB<CDB. Bulk polymerizations of styrene (St) were carried out in the presence of three reversible addition fragmentation chain transfer (RAFT) agents benzyl dithiobenzoate (BDB), cumyl dithiobenzoate(CDB), and 1-phenylethyl dithiobenzoate (PEDB) under low ratio of RAFT agent to initiator. The kinetic model was developed to predict polymerization rate, which indicates that the RAFT polymerization of St is a first-order reaction. In the range of experimental conversions, the plots of -ln(1-x) against time t are approximately linear (x is monomer conversion). The kinetic study reveals the existence of strong rate retardation in RAFT polymerization of styrene. A coefficient K_r is defined to estimate the rate retardation in the RAFT system considering the assumption that the retardation in polymerization rate is mainly attributed to slow fragmentation of the intermediate radicals. K_r relates to the structure of RAFT agents as well as the concentrations of RAFT agent and azobis isobutyronitrile (AIBN). For a certain RAFT agent, the value of K_r is enhanced by the increase in the initial concentration of RAFT agent and the higher ratio of RAFT to AIBN. With the same recipe for different RAFT agents, the increasing trend for the values of K_r is BDB<PEDB<CDB.
出处 《Transactions of Tianjin University》 EI CAS 2005年第2期92-96,共5页 天津大学学报(英文版)
关键词 模拟技术 延迟速度 聚合反应 苯乙烯 RAFT系统 动力学模式 reversible addition fragmentation chain transfer (RAFT) polymerization living polymerization styrene
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部