摘要
论文讨论了用边界固定的方法结合使用Legendre Tau方法来求解一个经典的单相自由边界问题的数值解,给出了Legendre Tau方法的半离散和全离散格式;在时间方向用Crank Nicolson离散格式,讨论其收敛性,并得到了在H1模下的误差估计.
This paper deals with a classical one-dimensional free boundary problem with a front-fixing and Lengendre-Tau method. A semi-discrete scheme using Lengendre-Tau method in space, and a full discrete scheme of Crank-Nicolson finite difference scheme in time are developed for the problem. Convergence of the scheme is analyzed. Error estimates for the scheme are derived in H^1 norm.
出处
《上海大学学报(自然科学版)》
CAS
CSCD
北大核心
2005年第2期168-173,共6页
Journal of Shanghai University:Natural Science Edition