期刊文献+

一个单相自由边界问题的Legendre-Tau方法 被引量:1

Legendre-Tau Method for A Classical One-Dimensional Free Boundary Problem
下载PDF
导出
摘要 论文讨论了用边界固定的方法结合使用Legendre Tau方法来求解一个经典的单相自由边界问题的数值解,给出了Legendre Tau方法的半离散和全离散格式;在时间方向用Crank Nicolson离散格式,讨论其收敛性,并得到了在H1模下的误差估计. This paper deals with a classical one-dimensional free boundary problem with a front-fixing and Lengendre-Tau method. A semi-discrete scheme using Lengendre-Tau method in space, and a full discrete scheme of Crank-Nicolson finite difference scheme in time are developed for the problem. Convergence of the scheme is analyzed. Error estimates for the scheme are derived in H^1 norm.
机构地区 上海大学理学院
出处 《上海大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第2期168-173,共6页 Journal of Shanghai University:Natural Science Edition
关键词 单相自由边界问题 Lengendre-Tau方法 边界固定法 半离散 全离散 one-dimensional free boundary problem Lengendre-Tau method front-fixing met
  • 相关文献

参考文献14

  • 1Carslaw H S, Jaeger J C. Conduction of heat in solids [M]. 2nd Ed. London: Oxford University Press, 1959. 56-178.
  • 2Crank J. Free and moving boundary problems [M]. Clakendon Press, 1984.116-254.
  • 3Nitsche J. A finite element method for parabolic free boundary problem [A]. Magenes E. Free boundary problems I [C]. Rome: Institute Nationale di Alta Mathmatical, 1980.277-318.
  • 4Pani A K, Das P C. A finite element Galerkin method for a unidimensional single-phase nonlinear Stefan problem with Dirichlet boundary conditions [J]. IMA J Numer Anal, 1991, 11:99-113.
  • 5Lee H Y, Lee J R. Error estimates for a single-phase quasilinear Stefan problem in one space dimension [J]. Appl Math Comput, 1998, 26:327-342.
  • 6Asaithambi N S. A variable time step Galerkin method for a one-dimensional Stefan problem [J]. Appl Math Comput, 1997, 81:189-200.
  • 7Bernardi C, Maday Y. Spectral methods [A]. Ciarlet P G, Lions J L. Handbook of numerical analysis(V): techniques of scientific computing (part 2)[C]. Amsterdam: Elsevier, 1997.209-486.
  • 8Gottlieb D, Lustman L, Tadmor E. Convergence of spectral methods for hyperbolic initial-boundary valur systems [J]. SIAM J Numer Anal, 1987, 24(3):532-537.
  • 9Guo B Y. Spectral method and their applications [M]. Singapore: World Scientific, 1998.82-187.
  • 10Li H Y, Wu H, Ma H P. Legendre Galerkin-Chebyshev collocation method for Burgers-like equation[J]. IMA J Numer Anual, 2003, 23(1):109-124.

同被引文献8

  • 1赵廷刚.谱方法的广义Hermite逼近[J].兰州大学学报(自然科学版),2007,43(1):116-118. 被引量:2
  • 2Crank J.Free and moving boundary problems[M].Oxford,UK:Clarendon Press,1984.
  • 3Pani A K,Das P C.A finite element Galerkin method for a unidimensionsl single-phlase nonlinear Stefan problem with Dirichlet boundary conditions[J].IMA J Numer Anal,1991,11:99-113.
  • 4Asaithambi N S.A variable time step Galerkin method for a one-dimensional Stefan problem[J].Appl Math Comput,1997,81:189-200.
  • 5费里德曼 A,夏宗伟译.抛物型偏微分方程[M].北京:科学出版社,1984:259-287.
  • 6Bernardi C,Maday Y.SpectralMethods[C]//Ciadet P G,Lions J L.Handbook of numerical analysis:Vol V,techniques of scientific computing(part 2).Amsterdam:Elsevier,North-Holland,1997:209-486.
  • 7Ma H P.Sun W W.Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[J].SIAMJ Numer Anal,2001,39:1380-1394.
  • 8Li H Y,Wu H,Ma H P.Legenclre Galerkin-Chebyshev collocation method for Bugers-like equation[J].SIMAJ Numer Annual,2003,23(1):109-124.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部