期刊文献+

小波理论在无单元方法中权函数研究的应用 被引量:1

Application of Wavelet Theory in Research on Weight Function of Meshless Method
下载PDF
导出
摘要  小波理论中多分辨率分析(MRA),可以提供在不同分辨率下分析表达信息的有效途径· 基于样条小波多分辨率分析,将无单元中的权函数投影到尺度空间去研究,尝试一种新的权函数研究方法。 Multiresolution analysis of wavelet theory can give an effective way to describe the information at various levels of approximations or different resolutions, based on spline wavelet analysis,so weight function is orthonormally projected onto a sequence of closed spline subspaces,and is viewed at various levels of approximations or different resolutions .Now, the useful new way to research weight function is found,and the numerical result is given.
出处 《应用数学和力学》 EI CSCD 北大核心 2005年第5期609-613,共5页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(50409008)
关键词 无单元 权函数 样条小波 多分辨率分析 meshless method weight function spline wavelet multiresolution analysis
  • 相关文献

参考文献8

  • 1周小平.对进一步发展无单元法的几点设想[J].福州大学学报(自然科学版),2001,29(3):84-87. 被引量:4
  • 2赵松年 熊小芸.小波变换与子波分析[M].北京:电子工业出版社,1992..
  • 3Belytschko T,Lu Y Y,Gu L.Element-free Galerkin methods[ J ] . International Journal for Numerical Methods in Engineering, 1994,37: 229-256.
  • 4Monaghan J. An introduction to SPH[ J]. Computer Physics Communication, 1988,48:89-96.
  • 5Liu W K,Jun S,Zhang S. Reproducing kernel particle methods[ J ] . International Journal for Numerical Methods in Fluids, 1995,20: 1081-1106.
  • 6Melenk J M, Babuska I. The partition of unity finite element method: basic theory and application[ J]. Computer Methods in Applied Mechanics Engineering, 1996,139:289-314.
  • 7Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2 ( r ) [ J ]. Trans of the American Mathematical Society, 1989,315:69-87.
  • 8Charles K C.An Introduction to Wavelet[M].Academic Press,1992.

二级参考文献5

共引文献3

同被引文献11

  • 1杨玉英,李晶.无网格Galerkin方法中权函数的研究[J].塑性工程学报,2005,12(4):5-9. 被引量:12
  • 2张雄,刘岩.无网格法[M].北京:清华大学出版社,2005 1-94.
  • 3Belytschko T, Krongauz Y, Organ D, et al. Meshless methods: an overview and recent developments[J]. Comput Methods Appl Mech Engrg, 1996,139:3--47.
  • 4Belytschko T, Liu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994,37 : 229-- 256.
  • 5Monaghan J J. An introduction to SPH[J]. Comput Phys Comm, 1988, 48:89--96.
  • 6Liu W K, Jun S. Reproducing kernel particle methods for structural dynamics[J]. International Journal for Numerical Methods in Engineering, 1995,38 : 1655-- 1679.
  • 7Zhu T, Zhang J O, Atluri S N. A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach [J]. Comput Mech, 1998,21:223--235.
  • 8Atluri S N, Zhu T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Comput. Mech, 1998,22 : 117-- 127.
  • 9Onate E, ldelsohn S, Zienkiewicz O C, et al. A finite point method in computational mechanics: applications to convective transport and fluid flow[J]. International Journal for Numerical Methods in Engineering. 1996, 39:3839--3866.
  • 10周小平.对进一步发展无单元法的几点设想[J].福州大学学报(自然科学版),2001,29(3):84-87. 被引量:4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部