期刊文献+

求解线性约束凸规划的势下降内点算法

Solving Linearly Constrained Convex Programming by Potential Reduction Interior-Point Algorithm
下载PDF
导出
摘要 介绍了一种利用势函数下降内点算法来求解带线性约束的凸规划问题,每次迭代中搜索方向由一个线性方程组解出,再利用Armijo准则进行线搜索,同时使一个势函数的值减小,最后给出一组算例。 This paper introduces a potential-reduction interior-point algorithm to solve linearly constrained convex programming. At each step of the algorithm, a system of linear equations is solved to get a search direction and the Armijo′s rule is used to determine a step size. Simultaneously the value of the potential function drops. At last a group of examples are given.
作者 戴霞
出处 《金陵科技学院学报》 2005年第1期5-7,30,共4页 Journal of Jinling Institute of Technology
关键词 凸规划 势函数 内点法 convex programming potential function interior-point method
  • 相关文献

参考文献1

二级参考文献12

  • 1[1]Lucia, A. and Xu, J.. Chemical process optimization using Newton-like methods. Computers chem. Engng. , 1990, 14(2):119-138
  • 2[2]Fletcher, R.. Practical methods of optimization. 2nd end.. New York, Wiley Pub. , 1987
  • 3[3]Lucia, A. , Xu, J. and Couto, G. C. D'. . Sparse quadratic programming in chemical process optimization. Ann. Oper. Res. , 1993, 42(1):55-83
  • 4[4]Vasantharajan, S. , Viswanathan, J. and Biegler, L.T.. Reduced successive quadratic programming implementation for large-scale optimization problems with smaller degrees of freedom. Computers chem. Engng. , 1990,14 (8): 907- 915
  • 5[5]Kozlov, M.K. , Tarasov, S.P. and Khachiyan, L.G. , Polynomial solvability of convex quadratic programming. Soviet Mathematics Doklady, 1979,20(8):1108-1111
  • 6[6]Kappor, S. and Vaidya, P.M.. Fast algorithms for convex quadratic programming and multicommodity flows. Proceedings of the 18th Annual ACM Symposium on Theory of Computing, California, May, 1986,147- 159
  • 7[7]Ye, Y. and Tse, E.. A polynomial algorithm for convex programmin. Working Paper, Department of Enginering-Economic Systems, Stanford University, Stanford, CA, 1986
  • 8[8]Monteiro, R. D.C. and Adler, I. , Interior path following primal-dual algorithms. Part I : convex quadratic programming. Math. Programming, 1989,44 (1) : 43- 66
  • 9[9]McCormick, G. P.. Nonlinear programming: theory, algorithms and applications. New York:John Wileg & Sons Inc. , 1983
  • 10[10]Monteiro, R. D. C. . A globally convergent primal-dual interior point algorithm for convex programming. Math. Programming, 1994, 64(1) : 123- 147

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部