摘要
该文将粗集与遗传算法相结合的方法成功应用于文本模糊聚类。在聚类过程中,将权重参数的设定也通过 编码由遗传算法确定,从而使得权重参数的设定具有科学性和可操作性,避免了在类似算法中确定权重时的主观性 和不可靠性。最后的实例说明了算法的可行性。
This paper presents a text fuzzy clustering algorithm which combines rough set and genetic algorithm fully. In the clustering process, the weight parameters are also described by genetic algorithm, thus it makes parameters more reasonable and operationable and avoids subjectivity and unreliability of describing weight parameters in the similar algorithms proposed by other researchers. The example demonstrates the feasibility of the algorithm.
出处
《电子与信息学报》
EI
CSCD
北大核心
2005年第4期548-551,共4页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60275020)资助课题
关键词
粗集
遗传算法
文本挖掘
模糊聚类
Rough set, Genetic algorithm, Text mining, Fuzzy clustering