期刊文献+

具有反馈控制的两种群竞争系统的概周期解 被引量:3

Almost Periodic Solution in Two Species Competitive System with Feedback Controls
下载PDF
导出
摘要 讨论了具有反馈控制的两种群概周期竞争系统,利用微分不等式和构造适当的 Lyapunov函数,获得存在全局渐近稳定的概周期解的充分条件. In this paper, almost periodic two-species competitive system with feedback controls is discussed. By making use of the differential inequality and constructing the suitable Lyapunov function, the authors give the sufficient conditions which guarantee the existence of unique global asymptotical stable almost periodic solution of the system.
出处 《生物数学学报》 CSCD 北大核心 2005年第1期28-32,共5页 Journal of Biomathematics
基金 国家自然科学基金(天元基金)(10426010)福建省青年科技人才创新基金(2004J0002)福建省教育厅基金(JA04156)福州大学科技发展基金(2003-QX-21)资助项目
关键词 反馈控制 概周期解 LYAPUNOV函数 全局渐近稳定性 Feedback control Almost periodic solution Lyapunov function Global asymptotic stability
  • 相关文献

参考文献1

二级参考文献8

  • 1Ahmad S. Convergence and ultimatebounds of Volterra-Lotka competitive equation.[J] J Math Anal Appl, 1987, 127 377-387.
  • 2Abmad S. On the nonautonomous Lotka-Volterra competitive equations[J]. Pro AmerMath Soc, 1993,117(1):199-204.
  • 3Lansun Chen. Models and Research Methods of Mathematical Ecology[M].Beijing:Beijing Science Press.988, 56-57.
  • 4Chattopadhyay J. Effect of toxic substances on a two-species competitive system[J].Ecol Model. 1996,84:287-289.
  • 5Cui J, Chen L. Asymptotic behavior of the solution for a class of time-dependentcompetitive system[J].Ann Diff Eqs, 1993, 9(1):11-17.
  • 6Xiao Y, Tang S, Chen J. Permanence and periodic solution in competitive system withfeedback con-trols[J].Mathl Comput Modelling, 1998, 27(6):33-37.
  • 7Gopalsamy K, Weng P. Feedback regulation of logistic growth [J].Internat J MathMath Sci, 1993, 16(1):177192.
  • 8Barbalat I. System d'equations differentielles d'oscillations nonlinears[J]. RevRoumaine Math Pures Appl.1959, 4(2):267-270.

共引文献15

同被引文献45

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部