摘要
研究生化反应中一类可逆多分子饱和反应系统x=a-xyn+cy(n+1),y= xyn-cy(n+1)-dy/(y+b),应用微分方程定性理论,完整的解决了该系统极限环的存在性、不 存在性和唯一性问题.
The following of a polymolecular reversible saturated biochemical reaction system is devoted: x=a-xyn+cy(n+1), y=xyn-cy(n+1)-dy/(y+b). By using qualitative theory of ordinary differential equations, the conditions of the existence, nonexistence and uniqueness of limit cycles of the system are completely obtained.
出处
《生物数学学报》
CSCD
北大核心
2005年第1期33-36,共4页
Journal of Biomathematics
关键词
可逆饱和反应
极限环
存在性
唯一性
Reversible saturated reaction
Limit cycle
Existence
uniqueness