期刊文献+

多维协变量具有测量误差的结构回归模型 被引量:1

Structural Regression Model with Measurement Errors of Covariates
下载PDF
导出
摘要 提出具有测量误差的结构回归模型,研究可交换条件下多维协变量的测量误差对 平均处理效应估计的影响.在没有其它的附加条件下,尽管大多数模型参数不可识别,平均处理 效应仍可识别.由于平均处理效应的极大似然估计求解困难,建议在实际中使用拟极大似然估计 作为替代. A structural regression model with measurement errors is established to study the impact of measurement errors of covariates on estimating the average treatment effect under exchangeability conditions. Without other additional conditioins, the average treatment effect is still identified even though most of the population parameters could not be identified. The quasi-maximum likelihood estimator of the average treatment effect is proposed to use in practice instead of the maximum likelihood estimator because of the complicated computation.
作者 金华 方积乾
出处 《生物数学学报》 CSCD 北大核心 2005年第1期77-82,共6页 Journal of Biomathematics
基金 国家自然科学基金重点项目(39930160)资助课题
关键词 可交换条件 结构回归模型 平均处理效应 测量误差 可识别 拟极大似然估计 Exchangeability conditions Structural regression model The average treatment effect Measurement errors Identifiable Quasi-maximum likelihood estimators
  • 相关文献

参考文献4

  • 1金华,方积乾.强可忽略处理分配下因果推断的结构回归模型[J].华南师范大学学报(自然科学版),2000,32(4):7-12. 被引量:4
  • 2Fuller W A. Measurement Error Models[M]. New York: Wiley, 1987.
  • 3Carroll R, Ruppert D, Stefanski L. Measurement Error in Nonlinear Models[M]. New York: Wiley, 1995.
  • 4Greenland S, RobinsJ M, Pearl J. Confounding and collapsibility in causal inference[J]. Statistical Science,1999, 14(1):29-46.

二级参考文献6

  • 1[1] Dawid A P. Conditional Independence in Statistical Theory [J]. Journal of the Royal Statistical Society, 1979(Ser. B), 41: 1~31.
  • 2[2] Rosenbaum P R, Rubin D B. The Central Role of the Propensity Score in Observational Studies for Causal Effects [J]. Biometrika, 1983, 70: 41~55.
  • 3[3] Robins J M, Greenland S. The Role of Model Selection in Causal Inference from Nonexperimental Data [J]. American Journal of Epidemiology, 1986, 123: 393~402.
  • 4[4] Greenland S, Robins J M, Pearl J. Confounding and Collapsibility in Causal Inference [J]. Statistical Science, 1999, 14(1): 29~46.
  • 5[5] Robins J M, Greenland S. Adjusting for Differential Rates of Prophylaxis Therapy for PCP in High Versus Low Dose AZT Treatment Arms in an AIDS Randomized Trial [J]. Journal of American Statistical Association, 1994, 89: 737~749.
  • 6[6] Robins J M, Ritov Y. Toward a Curse-of-dimensionality Appropriate (CODA) Asymptotic Theory for Semiparametric Models [J]. Statistics in Medicine, 1997, 16: 285~319.

共引文献3

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部