期刊文献+

安装智能摩擦阻尼器的高层建筑结构振动控制一般算法 被引量:2

Algorithm for vibration control of tall building with smart friction damper
下载PDF
导出
摘要 基于二次型控制目标函数的最优控制理论,从目标函数的泛函变分出发,用序列最优算法对目标函数进行求解,得到摩擦阻尼器最优正压力系数表达式,依此可以计算出比较精确的正压力数值解,并根据智能摩擦阻尼器的出力饱和与防止阻尼器锁死两种情况对正压力进行修正.算例表明这一算法对摩擦阻尼器的控制是有效的,可以发挥摩擦阻尼器的摩擦耗能功能,结构的层间位移和层间相对速度的峰值比未安装阻尼器时的地震响应峰值均得到明显降低. Based on optimal control theory with linear quadratic object function,a sequential optimal control (SOC) algorithm was developed using functional variation.The control gain matrix of optimal normal pressure on the damper was obtained by solving the object function with SOC.A more accurate numerical solution of the normal pressure was derived in form of pressure coefficients.The normal pressure can be adjusted to counter for the saturation of friction force and the lockup of the damper.Numerical simulation showed that the proposed algorithm is effective to achieve good performance for energy dissipation in the friction damper,and the peak response of inter-story drift and relative velocity are reduced evidently than those without damper.
出处 《兰州理工大学学报》 CAS 北大核心 2005年第2期103-106,共4页 Journal of Lanzhou University of Technology
基金 甘肃省自然科学基金(ZS021 A25 015 G)
关键词 结构振动控制 控制算法 地震工程 最优控制 高层建筑 智能摩擦阻尼器 structure vibration control control algorithm earthquake engineering optimal control tall building smart friction damper
  • 相关文献

参考文献4

二级参考文献25

  • 1杜永峰,许铁生.多层隔震框架多自由度体系的解耦动力分析[J].甘肃工业大学学报,1996,22(1):94-100. 被引量:6
  • 2大崎顺彦 谢礼立(译).振动理论[M].北京:地震出版社,1990..
  • 3周锡元.一般有阻尼线性体系地震反应的振型分解方法 [A].国家地震局工程力学研究所主编.地震工程研究进展(刘恢先80寿辰纪念文集) [C].北京:地震出版社,1992.120-125.
  • 4大崎顺彦 谢礼立译.振动理论[M].北京:地震出版社,1990..
  • 5Spencer B F,Jr. ,Johnson E A,Ramallo J C, Smart isolation for seismic eomrol [J]. JSME International Journal, Special issueon Frontiers of Motion and Vibration Control, 2000, 43 (3) :704-711.
  • 6Kelly J M. The role of damping in seismic isolation[J]. Earthq Engrg and Struc Dyn, 1999,28 (i): 3-20.
  • 7Foss F A. C.o-ordinatea which uncouple the equation of motion of damped linear ayatem[J]. J App Mech, 1958,26 (3) : 361-364
  • 8Crandall S H, McC.alley R B,Jr. Numerical method of analysis[M]. New York: McGraw-Hill, 1961.
  • 9Igusa T,Der Kiureghian A,Saekman J L. Model decomposition method for stationary response of non-clessicaily damped systems[J]. Earthq Engrg and Strut Dyn,1984,12(1): 121-136.
  • 10Du Yongfeng, Li Hui,Spencer B F,Jr. Effect of non-proportional damping on seismic isolation [J]. Journal of Structural Control, 2002,9(3) : 205-236.

共引文献51

同被引文献16

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部