摘要
基于von Kármán薄板非线性理论,分析讨论了面内径向周期变化载荷作用下,周边可移夹紧圆板在过屈曲构形附近的轴对称非线性振动,利用Ritz kantorovich平均方法将von Kármán板方程组简化为非线性常微分方程组,并通过打靶法数值求解,利用数值结果考察了过屈曲构形、不同的激振力、激振频率以及自振振幅对振动响应的影响.
On the basis of von Kármán's thin plate nonlinear theory,axisymmetrical nonlinear vibration,which takes place in the vicinity of post-buckling configuration of a circular plate with movable clamped edge under radial periodically variable load in a plane,is analyzed and discussed.The von Kármán's equation set of plates is simplified into a nonlinear ordinary differential equation set by employing the Ritz-Kantorovich averaging method and,then,solved numerically by using shooting method.The post-buckling configuration as well as the influence of various excitations,their frequency,and natural oscillation frequency on the vibration of plate is investigated numerically.Finally,the investigation results are analyzed.
出处
《兰州理工大学学报》
CAS
北大核心
2005年第2期137-140,共4页
Journal of Lanzhou University of Technology
基金
甘肃省自然科学基金(ZS022 A25 002)
关键词
非线性振动
圆板
过屈曲
激振力
nonlinear vibration
circular plates
post-buckling
excitation force