摘要
将几何相位理论应用于非同调谐振子(isotonicoscillator缩写为IO)这类量子系统,运用算符分解方法计算了系统在二态体系的AharonovAnandan相位,推广至三态及多态体系,并讨论了AA相位更普遍的计算公式和变化规律.
Operator decomposition approach is used to calculate the non-adiabatic geometric phase of anharmonic oscillator. As an example we focus on the isotonic oscillator, a type of anharmonic oscillator. The Aharonov-Anandan phase is derived when we choose the ground state and the first excited state as cyclic initial states. Then we generalize our result by choosing three states or more states as cyclic initial states. Finally, we give a general formula of Aharonov-Anandan phase for time-independent systems and discuss its applicability.
出处
《高能物理与核物理》
EI
CSCD
北大核心
2005年第4期350-353,共4页
High Energy Physics and Nuclear Physics
基金
南开大学天津大学刘微应用数学中心资助~~