期刊文献+

大塑性变形制备细晶材料的研究、开发与展望 被引量:33

Research and Development Prospects of Ultrafine-Grained Materials Fabricated by Severe Plastic Deformation
下载PDF
导出
摘要 系统介绍了大塑性变形(SPD)细化晶粒的条件和目的,综述了4种主要的大塑性变形工艺的基本原理、特点和应用,剖析了细晶材料的强度和超塑性特征,展示了大塑性变形制备细晶材料的诱人前景和发展方向。 The condition and purpose of ultrafine-grained materials fabricated by severe plastic deformation (SPD)are described systematically.Principle,character and application of four SPD techniques are reviewed.Strength and superplasticity of ultrafine-grained materials are also discussed.
出处 《材料导报》 EI CAS CSCD 北大核心 2005年第4期77-80,共4页 Materials Reports
关键词 大塑性变形 细晶材料 制备 展望 开发 塑性变形工艺 细化晶粒 基本原理 发展方向 性特征 equal channel angular extrusion high compression torsion high ratio extrusion cyclic extrusion superplasticity
  • 相关文献

参考文献31

  • 1Valiev R Z. Nanomaterial advantage. Nature,2002,419:887.
  • 2Valiey R Z,Korznikov A V,Mulyukov R R. Mater Sci Eng A,1993,168: 141.
  • 3Zhernakov V S,Latysh V V,et al. The developing of nanostructured SPD Ti for structural use. Scripta Mater, 2001,44:1772.
  • 4Iwahashi Y, Wang J, Horita Z, et al. Principle of equalchannel angular pressing for the processing of ultrafine grained materials. Scripta Mater, 1996,35:141.
  • 5Valiev R Z,Korznikov A V,Mulyukov R R. Structure and properties of ultrafine grained materials by sever plastic deformation. Mater Sci Eng, 1993,A186:141.
  • 6Valiey R Z,Krasilnikov N A,Tsenev N K. Plastic deformation of alloys with submicron grained structure. Mater Sci Eng, 1991 ,A137:35.
  • 7Berbon P, Furukawa M, Horita Z, et al. Mater Sci Fourm,1996,1013:217.
  • 8Koji Neishi,Zenji Horita,Langdon T G. Achieving superlasticity in a Cu-40%Zn alloy through severe plastic deformation. Scripta Mater, 2001,45: 965.
  • 9Horita Z,Furukawa M ,Nemoto M. Superplastic forming at high strain rates after severe plastic fedormation. Acta Mater, 2000,48: 3633.
  • 10Mabuchi M, lwasaki H, Yanase K, et al. Low temperature superplasticity in an AZ91 magnesium alloy processed by ECAE. Scr Mater,1997,36:681.

二级参考文献15

  • 1Kim W J, Chung S W, et al. Superplasticity in Thin Magnesium Alloy Sheets and Deformation Mechanism for Magnesium Alloy at Elevated Temperatures[J]. Acta Mater. 2001, ( 49 ) : 3337-3345.
  • 2Kubota K, Mabuchi M and Higashi K. Review: Processing and Mechanical Properties of Fine-grained Magnesium Alloy[J]. Jour. Mater. Sci.1999, ( 34 ) : 2255-2262.
  • 3Watanabe H, Mukai T, et al. Effects of Temperatures and Grain Size on the Dominant Diffusion Process for Superplastic Flow in an AZ61 Magnesium Alloy[J]. Acta mater.1999, 47 ( 4 ) : 3753-3758.
  • 4Bussiba A, Ben Artzy A, et al. Grain Refinement of AZ31 and ZK60 Magnesium Alloy-towards Superplastieity Studies[J]. Mater, Sci. Eng. 2001, ( A302 ) : 56-62.
  • 5Mordike B L, Ebert T. Magnesium: Properties-Applications-Potential[J]. Mater, Sci. Eng. 2001, ( A302 ) : 37-45.
  • 6Hiroyuki Watanabe, et al. Realization of High-strain-rate Superplasticity at Low Temperatures in a Mg-Zn-Zr Alloy[J].Mater. Sci. Eng. 2001, ( A307): 119-128.
  • 7Watanabe H, et al. Superplastie Deformation Mechanism in Powder Metallurgy Alloy and Composites[J]. Acta. Mater.2001. ( 49 ) : 2027-2037.
  • 8Mukai T, Watanable H and Higashi K. Application of Superplasticity in Commercial Magnesium Alloy for Fabrication of Structural Components[J]. Mater. Sci. Tech., 2000, ( 16 ) : 1314-1319.
  • 9Mabuehi M, Ameyama K, Iwasaki H, et al. Low Temperatures Superplastieity of AZ91 Magnesium Alloy with Non-equilibrium Grain Boundaries[J]. Acta. Mater., 1999,47 ( 7 ) : 2047-2057, 1999.
  • 10Hiroyuki Watanabe, Toshiji Mukai, Masahide Kohzu, et al. Low Temperatures Superplastieity in ZK60 Magnesium Alloy[J]. Mater. Trans., JIM, 1999,40 ( 8 ) : 809-814.

共引文献23

同被引文献356

引证文献33

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部