期刊文献+

基于四阶半离散中心迎风格式的虚拟流方法的应用 被引量:1

Applications of the ghost fluid method based on the fourth-order semi-discrete central-upwind scheme
下载PDF
导出
摘要 给出了求解多维无粘可压Euler方程组的四阶半离散中心迎风格式,该格式根据非线性波在网格单元边界上传播的局部速度来更准确地估计局部Riemann的宽度,避免了计算网格的交错,降低了格式的数值粘性。同时,考虑到LevelSet函数能隐式地追踪到界面的位置,而虚拟流的构造能隐式地捕捉到界面的边界条件,因此再将新的四阶半离散中心迎风格式与LevelSet方法以及虚拟流方法相结合,成功地处理了非反应激波和多介质流中爆轰间断的追踪问题。 A fourth-order semi-discrete central-upwind scheme for multidimensional inviscid compressible Euler equations is presented. Based on the local speeds of nonlinear wave propagation at grids' boundaries, the width of the local Riemann fans are calculated more accurately. Thus the scheme enjoys a much smaller numerical viscosity, and the staggering between two sets of grids is avoided. Since the location of the interface can be tracked by Level Set function implicitly and the boundary conditions are implicitly captured by the construction of a ghost fluid, the scheme is combined with the Level Set method and the ghost fluid method. In this way, the non-reacting shock problems and detonation discontinuities in multimaterial flows are tracked successfully.
出处 《爆炸与冲击》 EI CAS CSCD 北大核心 2005年第2期137-144,共8页 Explosion and Shock Waves
关键词 流体力学 半离散中心迎风格式 无粘可压Euler方程组 虚拟流方法 LEVEL SET方法 Boundary conditions Detonation Wave propagation
  • 相关文献

参考文献14

  • 1Liu X D, Osher S, Chan T. Weighted essentially non-oscillatory schemes[J]. Journal of Computational Physics, 1994,115(1):200-212.
  • 2Jiang G S, Shu C W. Efficient implementation of weighted ENO Schemes[J]. Journal of Computational Physics, 1996,126(1):202-228..
  • 3Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of conservation laws[J]. Mathematical Modeling and Numerical Analysis, 1999,33(3):547-571.
  • 4Levy D, Puppo G, Russo G. A fourth-order central WENO schemes for multidimensional hyperbolic systems of conservation laws[J]. SIAM Journal on Scientific Computing, 2002,24(2):480-506.
  • 5Kurganov A, Tadmor E. New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations[J].Journal of Computational Physics, 2000,160(1):241-282.
  • 6Kurganov A, Levy D. A third-order semidiscrete central schemes for conservation laws and convection-diffusion equations[J]. SIAM Journal on Scientific Computing, 2000,22(4):1461-1488.
  • 7Kurganov A, Noelle S, Petrova G. Semi-discrete central-upwind schemes for hyperbolic conservation laws and Hamilton-Jacobi equations[J]. SIAM Journal on Scientific Computing, 2001,23(3):707-740.
  • 8Aslam T D. A Level Set algorithm for tracking discontinuities in hyperbolic conservation laws I: Scalar equations[J]. Journal of Computational Physics, 2001,167(2):413-438.
  • 9Fedkiw R P, Aslam T D, Merriman B, et al. A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method)[J]. Journal of Computational Physics, 1999,152(2):457-492.
  • 10Fedkiw R P, Aslam T D, Xu S J. The ghost fluid method for deflagration and detonation discontinuities[J]. Journal of Computational Physics, 1999,154(2):393-427.

同被引文献7

  • 1封建湖,蔡力,王振海,余红伟.基于Level Set的多维双曲守恒律标量方程的激波追踪方法[J].应用力学学报,2005,22(1):17-20. 被引量:2
  • 2蔡力,封建湖,谢文贤,王振海.求解粘性Hamilton-Jacobi方程的高阶方法[J].计算物理,2005,22(2):123-129. 被引量:2
  • 3T.Chan,L.Vese,Active contours without edges,IEEE Transaction Image Processing,10:2(2001),266-277.
  • 4S.Osher,J.A.Sethian,Fronts propagating with curvature-dependent speed:Algorithm based on Hamilton-Jacobi formulation,J.Comput.Phys,79:1(1988),12-49.
  • 5J.A.Sethian,Level set methods and fast marching methods:Evolving interface in computational geometry,fluid mechanics,computer vision,and materials,Cambridge University Press,1999.
  • 6H.K.Zhao,T.Chan,B.Merriman and S.Osher,A variational level set approach to multiphase motion,J.Comput.Phys,127:1(1996),179-195.
  • 7M.Sussman,P.Smereka and S.Osher,A level set approach for computing solutions to incompressible two-phase fluid,J.Comput.Phys,119:1(1994),146-159.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部