期刊文献+

(α,d,β)超过程Tanaka公式的注记

原文传递
导出
摘要 在最优的初始条件及最优的维数条件下,证明了(α,d,β)超过程关于局 部时的Tanaka公式成立.
作者 向开南
出处 《中国科学(A辑)》 CSCD 北大核心 2005年第4期410-424,共15页 Science in China(Series A)
基金 国家自然科学基金资助项目(批准号:10101002)
  • 相关文献

参考文献14

  • 1Iscoe I. A weighted occupation time for a class of measure-valued critical branching Brownian motions.Prob Th Rel Fields, 1986, 71:85~116.
  • 2Dawson D A. Infinitely divisible random measures and superprocesses. In: Korezlioglu H, Ustunel A S,eds. Stochastic Analysis and Related Topics. Boston: Birkhauser, 1992. 1~129.
  • 3Dawson D A. Measure-valued Markov Processes. Lect Note in Math, Vol 1541. New York: SpringerVerlag, 1993.
  • 4Fleischmann K. Critical behavior of some measure-valued processes. Math Nachr, 1988, 135:131~147.
  • 5Dynkin E B. Representation for functionals of superprocesses by multiple stochastic integrals, with applications to self intersection local times. Asterisque, 1988, 157-158:147~171.
  • 6Adler R J, Lewin M. Local time and Tanaka formulae for super Brownian and super stable processes. Stoc Proc Appl, 1992, 41:45~67.
  • 7Adler R J. Superprocess local and intersection local times and their corresponding particle pictures. In:Seminar on Stochastic Processes, Seattle, WA, 1992. Progr Probab, 33. Boston: Birkhauser, 1993. 1~42.
  • 8Krone S M. Local times for superdiffusions. Ann Probab, 1993, 21(3): 1599~1623.
  • 9Mytnik L, Perkins E A. Regularity and irregularity of β-stable super-Brownian motion. Ann Probab,2003, 31(3): 1413~1440.
  • 10Dynkin E B, Kuznetsov S E. Natural linear additive functionals of superprocesses, Ann Probab, 1997,25(2): 640~661.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部