期刊文献+

非凸单个守恒律初边值问题的整体弱熵解的构造 被引量:6

CONSTRUCTION OF GLOBAL WEAK ENTROPY SOLUTION OF INITIAL-BOUNDARY VALUE PROBLEM FOR NONCONVEX SCALAR CONSERVATION LAWS
原文传递
导出
摘要 本文研究具有两段常数的初始值和常数边界值的非凸单个守恒律的初边值问题.在流函数具有一个拐点的条件下,由相应的初始值问题弱熵解的结构和Bardos-Leroux-Nedelec提出的边界熵条件,给出初边值问题整体弱熵解的一个构造方法,澄清弱熵解在边界附近的结构.与严格凸的单个守恒律初边值问题相比,非凸单个守恒律初边值问题的弱熵解中包括下列新的相互作用类型:一个接触或非接触激波碰到边界,边界弹回一个非接触激波. This paper is concerned with an initial-boundary problem of nonconvex scalar conservation laws with two pieces of constant initial data and constant boundary data. Under the condition that the flux function has one inflection point, by the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method for the global weak entropy solution of the initial-boundary value problem and clarify the solution structure nearby the boundary. In contrast to the initial-boundary value problem for strictly convex scalar conservation laws, the weak entropy solution of the initial-boundary value problem for nonconvex scalar conservation laws includes the following new interaction type: a contact or non-contact shock collides with the boundary and a new non-contact shock wave rebounds from the boundary.
作者 刘红霞 潘涛
机构地区 暨南大学数学系
出处 《系统科学与数学》 CSCD 北大核心 2005年第2期145-159,共15页 Journal of Systems Science and Mathematical Sciences
基金 广东省自然科学基金(04010473) 暨南大学引进优秀人才科研启动基金(51204033)资助课题.
关键词 初边值问题 单个守恒律 弱熵解 非凸 初始值问题 构造方法 相互作用 流函数 边界值 熵条件 严格凸 常数 结构 激波 拐点 Nonconvex scalar conservation laws, initial-boundary problem, boundary entropy condition, global weak entropy solution.
  • 相关文献

参考文献28

  • 1Courant R and Friedrich K F. Supersonic Flows and Shock Waves. New York: Wiley-Interscience,1948.
  • 2Whitham G B. Linear and nonlinear waves. New York: Wiley-Interscience, 1974.
  • 3Bustos M C and Concha F. On the construction of global weak solutions in the kynch theory of sedimentation. Math. Methods in the Appl. Sci., 1988, 10: 245-264.
  • 4Bustos M C, Paiva F and Wendland W L. Control of continuous sedimentation of an ideal suspension as an initial and boundary value problem. Math. Methods in the Appl. Sci., 1990, 12:533-548.
  • 5Bustos M C, Concha F and Wendland W L. Global weak solution to the problem of continuous sedimentation of an ideal suspension. Math. Methods in the Appl. Sci., 1990, 13: 1-22.
  • 6Bustos M C, Paiva F and Wendland W L. Entropy boundary condition in the theory of sedimentation of ideal suspension. Math. Methods in the Appl. Sci., 1996, 19: 679-697.
  • 7Bardos C, Leroux A Y and Nedelec J C. First order quasilinear equations with boundary conditions.Comm. Part. Diff. Eqs., 1979, 4: 1017-1034.
  • 8Szepessy A. Measure-value solution to scalar conservation laws with boundary conditions. Arch.Rat. Mech. Anal., 1989, 139: 181-193.
  • 9Joseph K T. Burgers equation in the quarter plane: a formula for the weak limit. Comm. Pure Appl. Math., 1988, 41: 133-149.
  • 10LeFloch P G. Explicit formula for scalar nonlinear conservation laws with boundary conditions.Math. Methods in the Appl. Sci., 1988, 10: 265-287.

同被引文献26

  • 1李杰民,刘红霞.具有两条边界影响的非凸单个守恒律的整体弱熵解[J].暨南大学学报(自然科学与医学版),2006,27(1):30-37. 被引量:1
  • 2崔慧萍,刘红霞.具有边界条件的非凸单个守恒律整体弱熵解的结构[J].暨南大学学报(自然科学与医学版),2005,26(3):291-297. 被引量:1
  • 3Hong Xia LIU Tao PAN.Construction of Solutions and L^1-error Estimates of Viscous Methods for Scalar Conservation Laws with Boundary[J].Acta Mathematica Sinica,English Series,2007,23(3):393-410. 被引量:10
  • 4[1]BARDOS C,LEROUX A Y,NEDELEC J C.First order quasilinear equations with boundary conditions[J].Comm Part Diff Eqs,1979,4:1017-1034.
  • 5[2]SZEPESSY A.Measure-value solution to scalar conservation laws with boundary conditions[J].Arch Rat Mech Anal,1989,139:181-193.
  • 6[3]LEFLOCH P G.Explicit formula for scalar nonlinear conservation laws with boundary conditions[J].Math Meth Appl Sci,1988,10:265 -287.
  • 7[4]LEFLOCH P G,NEDELEC J C.Explicit formula for weighted scalar nonlinear conservation laws[J].Trans Amer Math Sco,1988,308:667-683.
  • 8[5]JOSEPH K T,VEERAPPA GOWDA G D.Explicit formula for the solution of convex conservation laws with boundary condition[J].Duke Math J,1991,62:401 -416.
  • 9[6]PAN Tao,LIN Long-wei.The global solution of the scalar nonconvex conservation law with boundary condition I[J].J Part Diff Eqs,1995,8:371 -383.
  • 10[7]DAFERMOS C M.Polygonal approximations of solutions of the initial value problem for a conservation law[J].J Diff Eqs,1972,38:33 -41.

引证文献6

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部