摘要
旨在研究一个带时滞的变连接权细胞神经网络模型的稳定性.运用Lyapunov函数方法、代数不等式和有关微分方程稳定性理论,给出了该模型稳定性的判据,并举例说明该判据的可行性.变连接权细胞神经网络模型的稳定性研究目前还是一个较新的研究领域,故所得到的稳定性判据在理论和应用上都具有一定的指导意义.
The stability of cellular neural networks with time-varying connection weights is studied. By applying a Lyapunov function and an algebric inequality,and citing conclusions concerning on stability of differen-(tial equations) in literature,this paper gives the equation criteria for guaranteeing the stability and exponential stability of cellular neural networks with time-varying connection weights .An example is given to illustrate the feasibility of our main results. At present, the stability of model with variable connection weights is a new research field. Therefore, the obtained results are useful in the design and application of neural networks.
出处
《天津大学学报(自然科学与工程技术版)》
EI
CAS
CSCD
北大核心
2005年第4期369-371,共3页
Journal of Tianjin University:Science and Technology
基金
国家自然科学基金资助项目(70171004)
刘徽应用数学中心资助项目
关键词
变连接权
变时滞
细胞神经网络
渐近稳定性
指数稳定性
time-varying connection weights
time-varying delay
cellular neural networks
asymptotical (stability)
exponential stability