期刊文献+

基于FrFT优化窗的STFT及非线性调频信号瞬时频率估计 被引量:4

Instantaneous Frequency Estimation Using STFT with an Optimal Window by Fractional Fourier Transform
下载PDF
导出
摘要 瞬时频率(IF)是描述非平稳调频信号最基本的参数,调频信号广泛应用于声纳、雷达、通讯和生物等领域。本文采用分数阶Fourier变换来优化STFT的窗函数,并估计非线性调频信号的瞬时频率。进行了详细的误差理论分析。同时在实验上和Wingner分布(WVD)、短时Fourier变换(STFT)进行误差(MSE)比较分析。仿真证明,FrFt优化窗STFT对估计非线性调频信号的瞬时频率具有良好的性能。 Abstract: The instantaneous frequency(IF)is a basic parameter which may be used to describe the non-stationary frequency-coded signals in a process, Which is used in many areas such as seismic, radar, sonar, communications and biomedical applications. The paper adopt Fractional Fourier Transform to optimize the window of STFT an use it to estimate IF of non-linear frequency-modeled signal (NLFM) and analyze the MSE detailedly by theoretics. At the same time, Compared with WVD, STFT by computer simulation. It has been show excellent performance for IFE of NLFM.
出处 《宇航学报》 EI CAS CSCD 北大核心 2005年第2期217-222,共6页 Journal of Astronautics
关键词 瞬时频率估计 FRFT 误差分析 优化窗 IFE FRFT MSE Optimal Window
  • 相关文献

参考文献7

  • 1Kwok K,Jones L.Improved Instantaneous Frequency Estimation Using an Adaptive Short-Time Fourier Transform[J].IEEE trans.on signal processing,2000,48(10):2964-2972
  • 2Bracewell R N.The Fourier Transform and Its Applications[M].2nd ed.New York:McGraw-Hill,1986
  • 3Almeida L B.The fractional Fourier transform and time-frequency representation[J].IEEE Trans.Signal Processing,1994,42(10):3084-3091
  • 4Durak and Arikan.Short-Time Fourier Transform:Two Fundamental:Properties and an Optimal Implementation[J].IEEE trans.on signal processing,20003,51(5):1231-1242
  • 5Durak and Arikan.Generalized time-bandwidth product optimal short-time Fourier transformation[J].IEEE Trans.Signal Processing,2002,50(7):1465-1468
  • 6Ozaktas H M.Digital computation of the fractional Fourier transform[J].IEEE Trans.Signal Processing,1996,44(9):2141-2150
  • 7Hussain and Boashash.Adaptive Instantaneous Frequency Estimation of Multi-component FM Signals Using Quadratic Time-Frequency Distributions[J].IEEE Trans.Signal Processing,2002,50(8):1866-1876

同被引文献25

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部