期刊文献+

基于混淆矩阵的全方位角雷达目标识别 被引量:5

Confusion-Matrix Based Whole-Aspect-Range HRRP Recognition
下载PDF
导出
摘要 基于高分辨径向距离像HRRP(High Resolution Range Profile)的目标识别一直是雷达目标识别研究的重要方向。H RRP的目标姿态敏感性极大地影响了识别性能,尤其是全方位角目标识别的性能。本文提出一种基于混淆矩阵的分类方法,采用支持向量机(SVM)作为基本的两类分类器(Binary Classifier),使用H AC(H ierarchicalAgglom erative Clustering)构造了一个基于“错误纠正”策略的两层层次化分类器(H ierarchicalClassifier)。实验表明,在复杂度增加不大的情况下,识别性能得到了相当程度的提高。 It has been an important area on the research of radar target recognition based on HRRP(High Resolution Range Profile). HRRP is aspect-sensitive which greatly deteriorates the performance of recognition, especially that of whole-aspect-range recognition. We propose a confusion matrix based SVM classification algorithm, which constructs an‘error-correct’ hierarchical classifier using HAC (Hierarchical Agglomerative Clustering). Experiments show that the performance of recognition improves considerably at expense of limited extra complexity.
出处 《微电子学与计算机》 CSCD 北大核心 2005年第3期136-139,143,共5页 Microelectronics & Computer
关键词 HRRP 雷达目标识别 混淆矩阵 SVM HRRP, Radar target recognition, Confusion matrix, SVM
  • 相关文献

参考文献12

  • 1杨华,任勇,李莹,山秀明,肖志河,巢增明.基于径向基函数神经网络的飞机目标识别法[J].清华大学学报(自然科学版),2001,41(7):36-38. 被引量:6
  • 2Cheung J, Baldygo W, Saito Y. Optimal Target Identification Based upon Ultra High Resolution Radar Profiles. In Proceeding of IEEE National Radar Conference. Syracuse:1997:278~283.
  • 3Li H J , Yang S H. Using Range Profiles as Feature Vectors to Identify Aerospace Objects. IEEE Trans. on AP,1993, 41(3):261~268.
  • 4Li H J, Wang Y D, Wang L H. Matching Score Properties between Range Profiles of High Resolution Radar Targets.IEEE Trans. on AP, 1996, 44(4): 444~452.
  • 5杨华,任勇,李莹,山秀明,肖志河,巢增明.以相关系数为特征量的飞机目标识别法[J].清华大学学报(自然科学版),2001,41(7):29-31. 被引量:6
  • 6Vapnik V N. The Nature of Statistical Learning Theory.Springer Verlag, 2nd edition, 1998.
  • 7Wahba G. Support Vector Machines, Reproducing Kernel Hilbert Spaces, and the Randomized GACV. Advances in Kernel Methods Support Vector Learning', MIT Press,1999: 69~88.
  • 8Dumais S T and Chen H. Hierarchical Classification of Web content. In Proceedings of the 23rd ACM Int. Conf.on Research and Development in Information Retrieval (SIGIR'2000), Athens, 2000,GR: 256~263.
  • 9Godbole S, Sarawagi S, Chakrabarti S. Scaling Multiclass Support Vector Machines Using Interclass Confusion. In Proceeding of SIGKDD'02 Edmonton, Canada, 2002.
  • 10El-Hamdouchi A, Willett P. Hierarchic Document Clustering Using Ward's Method. In Information Processing and Management, 1986.

二级参考文献14

  • 1唐白玉,褚扬清,柯有安.正交FDWT与雷达数据压缩及目标识别方法[J].系统工程与电子技术,1997,19(8):4-7. 被引量:4
  • 2[1]Mitchell R A, Westerkamp J J. Robust Statistical Feature Based Aircraft Identification[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(3): 1077-1093.
  • 3[2]Zyweck A, Bogner R E. Radar Target Classification of Commercial Aircraft[J]. IEEE Trans. on Aerospace and Electronic Systems, 1996, 32(2): 598-606.
  • 4[3]Bhatnagar R, Horvitz R, Williams R. A Hybrid System for Target Classification [J]. Pattern Recognition Letters, 1997, 18: 1399-1403.
  • 5[4]Vapnik V N. Statistical Learning Theory [M]. New York: John Wiley & Sons Inc. Pub., 1998: 493-520.
  • 6[5]Cristianini N, Taylor J S. An Introduction to Support Vector Machines: And Other Kernel-Based Learning Methods [M]. New York: Cambridge University Press, 2000: 93-112.
  • 7[6]Schlkopf B, Smola A J, Williamson R C, et al. New Support Vector Algorithms [J]. Neural Computation, 2000, 12: 1207-1245.
  • 8[7]Hsu C W, Lin C J. A Comparison on Methods for Multi-Class Support Vector Machines [R]. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University, 2001.
  • 9[8]Chapelle O, Vapnik V. Model Selection for Support Vector Machines [EB]. http://www. ens-lyon.fr/~ochapell/ms-nips99.ps, 1999: 12.
  • 10[9]Campbell C. Algorithmic Approaches to Training Support Vector Machines: A Survey [A]. Michel Verleysen, eds. Proceedings of 8th European Symposium on Artificial Neural Networks [C]. Bruges, Belgium: D-Facto, 2000: 8-17.

共引文献13

同被引文献50

引证文献5

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部