期刊文献+

锥形渐扩管内紊流数值预测诊断系统的研究——网格数和差分方法的影响 被引量:5

Study on Diagnostic System for Numerical Prediction of Turbulent Flow in Conical Diffuser: Effect of Grid Numbers and Difference Method
下载PDF
导出
摘要 用DHR型kε紊流模型及其壁面函数·BFC(边界拟合曲线坐标变换)法,对总扩散角为8°、扩散度为4的锥形渐扩管路内完全发展的不可压粘性紊流场进行了数值仿真.所研究的紊流在入口的雷诺数为2 93 0 0 0和1160 0 0 .在不同的网格数和差分方法等计算条件下分别给出了时均流速、紊流动能分布的计算结果,并分别与实验结果进行比较和分析,得知在不同计算条件下对计算结果的影响程度. Fully developed incompressible turbulent flow in a conical diffuser having a total divergence of 8 and an area ratio of 4 has been simulated by a DHR kε turbulence model and it's wall function BFC(Boundary Fit Coordinates) approach. The research has been done for pipe entry Reynolds numbers of 293 000 and 116 000 .The calculated result of the distribution of the mean flow velocity and turbulence energy has been given out under the different calculated conditions, such as grid numbers and difference method. It was analysed and compared with the test result respectively, and it got the effect of calculated result under the different calculated conditions.
作者 孙勇 何永森
出处 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2005年第1期47-50,共4页 Natural Science Journal of Xiangtan University
基金 国家自然科学基金资助项目 (5 93 75 2 11)
关键词 数值模拟 锥形渐扩管 紊流 DHR型k—ε紊流模型 壁画函数·BFC法 numerical simulation conical diffuser turbulent flow DHR kε turbulence model wall function BFC method
  • 相关文献

参考文献5

  • 1Lander B E,Spalding D B.The Numerical Computation of Turbulent Flows[A].Compu Methods in Appland Eng[C].New York:Northholland Publishing Company,1974:269.
  • 2Thompson J F,Thames F C,Mastin C W.Automatic numerical generation of bodyfitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies[J].J Comp Phys,1974:15:299.
  • 3Laufer J.The Structure of Turbulence in Fully Developed Pipe Flow NACA Rep[R].1174.Washington:U S Government Printing Office,1955:6.
  • 4Okwuobi P A C,Azad R S.Turbulence in a Conical Diffuser with Fully Developed Flow at Entry[J].J Fluid Mech,1973:57(3):603.
  • 5Singh D,Azad R S.Turbulent Kinetic Energy Balance in a Conical Diffuser[J].Proc of Turbulence ,1981,21:30-34.

同被引文献26

  • 1Thompson J F,Thames F C,Mastin C W.Automatic numerical generation of bodyfitted curvilinear coordinate system for fields containing any nmber of arbitrary two-dimensional bodies[J].J Comp Phys,1974,15:299.
  • 2Okwuobi P A C,Azad R S.Turbulence in a conical diffuser with fully developed flow at entry[J].J Fluid Mech,1973,57(3):603.
  • 3Singh D,Azad R S.Turbulent kinetic energy balance in a conical diffuser[R].Manitoba,Canada,Department of Mechanical Engineering University of Manitoba Winniipeg,1981.
  • 4Laufer J.The Structure of Turbulence in Fully Developed Pipe Flow[M].NACA Rep.1174 Washington:U.S.Government Printing Office,1955.
  • 5Okwuobi P A C,Azad R S.Turbulence in a Conical Diffuser with Fully Developed Flow at Entry[J].J Fluid Mech,1973,57(3):603.
  • 6Singh D,Azad R S.Turbulent Kinetic Energy Balance in a Conical Diffuser[R].Department of Mechanical Engineering University of Manitoba Winniipeg,Manitoba,Canada R3T,2N2.
  • 7Rousseau A N,Albright L D,Torrance K E.A short Comparison of Damping Functions of Standard Low-Reynolds-Number k-ε Models[J].Transactions of the ASME,1997,119:460.
  • 8Lander B E,Spalding D B.The Numerical Computation of Turbulent Flows[M].New York:Northholland Publishing Company,1974.
  • 9He Yongsen,Liu Shaoying.Numerical Prediction of Turbulent Flows in a Conical Diffuser Using k-ε Model for Near-Wall and Low Re-Number[C].The 4 th Asian International Conference on Fluid Machinery,Suzou,1993.
  • 10Thompson J F,Thames F C,Mastin C W.Automatic numerical generation of bodyfitted curvilinear coordinate system for fields containing any number of arbitrary two-dimensional bodies[J].J Comp Phys,1974,15:299.

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部