期刊文献+

表面展示技术在污染环境生物修复中的应用 被引量:1

APPLICATIONS OF CELL-SURFACE DISPLAY TECHNOLOGY IN BIOREMEDIATION OF POLLUTED ENVIRONMENTS
下载PDF
导出
摘要 革兰氏阴性细菌、革兰氏阳性细菌和酵母中已建立多个表面展示短肽和蛋白质的系统.在微生物细胞表面展示外源蛋白对污染环境的生物修复有着重要的意义.展示金属结合蛋白(肽)的微生物可用于污染土壤和工业废水的净化,展示有机磷水解酶的微生物将用于有机磷污染物的脱毒.微生物表面展示技术将成为污染环境生物修复的有效策略.这一技术的研究还是一个新领域,要使其得到应用还有许多问题需要解决. Many systems for the display of either short peptides or native proteins on Gram-negative bacteria, Gram-positive bacteria and yeast have been developed. The expression of heterologous proteins on the surface of microbial cells is proved very important for bioremediation. The microbes, expressing metal-binding peptide/protein on cell surface, can be used as bioadsorbents in the purification of contaminated soil and industrial wastewater while those displaying organophosphorus hydrolase are to be used for detoxification of organophosphorus contaminants. Surface display of engineered peptide/protein on microbes might become a useful strategy for the effective bioremediation of polluted environments, but the corresponding research is still a relatively new field and some problems need to be addressed before application. Ref 38
作者 高蓝 李浩明
机构地区 广东药学院
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2005年第2期256-259,共4页 Chinese Journal of Applied and Environmental Biology
关键词 表面展示技术 生物修复 生物吸附 脱毒 cell-surface display technology bioremediation bioadsorbent detoxification
  • 相关文献

参考文献38

  • 1郭波,谢佩蓉,邹强,郑萍.酵母表面展示系统研究进展[J].生物化学与生物物理进展,2002,29(1):19-22. 被引量:18
  • 2Chen W, Gerogiou G. Cell - surface display of heterologous proteins:from high - throughput screening to environmental applications. Biotech Bioeng, 2002, 79 (5): 496 ~ 503.
  • 3Samuelson P, Wernerus H, Svedberg M, Stahl S. Staphylococcal surface display of metal - binding polyhistidyl peptides. Appl Environ Microbiol, 2000, 66:1243 ~ 1248.
  • 4Francisco JA, Earhart CF, Georgiou G. Transport and anchoring of beta - lactamase to the external surface of Escherichia coli. Proc Natl AcadSci USA, 1992, 89:2713 ~2717.
  • 5Earhart CF. Use of an Lpp - OmpA fusion vehicle for bacterial surface display. Methods Enzymol, 2000, 326: 506 ~ 516.
  • 6Shimazu M, Mulchanani A, Chen W. Simultaneous degradation of organophosphorus pesticides and p -nitrophenol by a genetically engineered Moraxella sp. with surface -expressed organophosphorus hydrolase. Biotechnol Bioeng, 2001, 76: 318 ~ 324.
  • 7Schneewind O, Fowler A, Faull KF. Structure of the cell wall anchor of surface proteins in Staphylococcus aureus. Science, 1995, 268:103 ~106.
  • 8Lehtio J, Wernerus H, Samuelson P, Teeri TT, Stahl S. Directed immobilization of recombinant staphylococci on cotton fibers by functional display of a fungal cellulose - binding domain. FEMS Microbiol Letts,195: 197 ~ 204.
  • 9Strauss A, Gotz F. In vivo immobilization of enzymatically active polypeptides on the cell surface of Staphylococcus carnosus. Mol Microbiol,1996, 21:491 ~500.
  • 10Samuelson P, Wernerus H, Svedberg M, Stahl S. Staphylococcal surface display of metal - binding polyhistidyl peptides. Appl Environ Microbiol, 2000, 66: 1243 ~ 1248.

二级参考文献49

  • 1[1]Gadd, G. M. Curr. Opin. Biotechnol., 2000,11: 271-279.
  • 2[2]Eccles,H.TIBTECH,1999,17:462-465.
  • 3[3]Smith,G.P.Science,1985,228:1315-1317.
  • 4[4]Clackson, T., James, A. W. TIBTECH, 1994,12:173-184.
  • 5[5]Sousa, C., Cebolla, A., Lorenzo, V. Nature Biotechnology. 1996,14:1017-1020.
  • 6[6]Xu, Z., Lee, S. Y. Appl. Environ. Microbiol., 1999, 65:5142-5147.
  • 7[7]Romeyer, F. M., Jacobs, F. A., Masson, L., et al J. Biotechnol.,1988,8:207-220.
  • 8[8]Odawara, F., Kurasaki, M., Suzuki-Kurasaki, M., et al J. Biochem. ,1995,118:1131-1137.
  • 9[9]Sousa, C., Kotrba, P., Ruml, T., et al Journal of Bacteriology, 1998,180: 2280-2284.
  • 10[10]Kotrba, P., Pospisil, P., Lorenzo, V., et al J. of Receptor & Transduction Research, 1999,: 703-715.

共引文献26

同被引文献21

  • 1韩春梅,王林山,巩宗强,许华夏.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502. 被引量:412
  • 2王保军,杨惠芳.微生物与重金属的相互作用[J].重庆环境科学,1996,18(1):35-38. 被引量:50
  • 3McLean J, Beveridge T J. Chormate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate[J]. Appl. Environ. Microbiol, 2001, 67: 1076- 1084.
  • 4Ledin M, Krantz Rulcker C,Allard B. Zn, Cd and Hg Accumulation by Microorganisms, Organic and Inorganic Soil Components in Mult-compartment Systems [J]. Soil Biochem, 1996, 28 (6) : 791-799.
  • 5Zhuang X, Chen J, Shim H, et al. New Advances in Plant Growth Promoting Rhizobacteria for Bioremediation [J]. Environment International,2007, 33(3): 406-413.
  • 6Reddy K R, Cutright T J. Nutrient Amendment for the Bioremediation of a Chromium-contaminated Soil by Electrokinetics [J]. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2003,25 (9) : 931 - 943.
  • 7Higgins T E. In Situ Reduction of Hexavalent Chromium in Alkaline Soils Enriched with Chromite Ore Processing Residue [J]. Air and Waste Manage. Assoc. , 1998,48 : 1100-1106.
  • 8Ueno A, Ito Y, Yamamoto I, et al. Isolation and Characterization of Bacteria from Soil Contaminated with Diesel Oil and the Possible Use of These in Autoehthonous Bioaugmentation[J]. Mierobiol Biotechnol, 2007, 23, 1739-1745.
  • 9Gadd GM. Bioremedial Potential of Microbial Mechanisms of Mmetal Mobilization and Immobilization[J]. Curt Opin Biotechnol, 2000, 11 (3):271-279.
  • 10Sousa C, Cebolla A, De Lorenzo V. Enhanced Metal Load Sorption of Bacterial Cells Disp-laying Poly-His Peptides [J]. Nature Biotechnology, 1996, 14: 1017-1020.

引证文献1

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部