期刊文献+

最小距离分类器的改进算法——加权最小距离分类器 被引量:30

Improved minimum distance classifier — weighted minimum distance classifier
下载PDF
导出
摘要 最小距离分类器是一种简单而有效的分类方法。为了提高最小距离分类器的分类性能,主要的改进方法是选择更有效的距离度量。通过分析多重限制分类器和决策树分类器的分类原则,提出了基于标准化欧式距离的加权最小距离分类器。该分类器通过对标称型和字符串型属性的距离的加权定义,以及增加属性值的范围约束,扩大了最小标准化欧式距离分类器的适用范围,同时提高了其分类准确率。实验结果表明,加权最小距离分类器具有较高的分类准确率。 Minimum distance classifier is a simple and effective classification method. To improve its classification performance, the main methods were selecting the more effective distance measure. On the basis of analyzing the classification principle of decision tree classifier and parallelpiped classifier, a new classification method based on normalized Euclidian distance, called WMDC(weighted minimum distance classifier), was proposed. By adding weight define with nominal and string attributes and adding range restriction of attribute's value, WMDC extended applicability of MDC(minimum distance classifier) using normalized Euclidian distance and improved its classification accuracy. Experiment results show this model has good classification accuracy in most data sets.
作者 任靖 李春平
出处 《计算机应用》 CSCD 北大核心 2005年第5期992-994,共3页 journal of Computer Applications
基金 国家 863计划资助项目(2002AA444120)
关键词 最小距离分类器 欧式距离 多重限制分类器 决策树分类器 minimum distance classifier Euclidian distance parallelpiped classifier decision tree classifier
  • 相关文献

参考文献5

  • 1庞剑锋,卜东波,白硕.基于向量空间模型的文本自动分类系统的研究与实现[J].计算机应用研究,2001,18(9):23-26. 被引量:293
  • 2TOTH D, AACH T. Improved minimum distance classification with Gaussian outlier detection for industrial inspection[A]. Italy, 11th International Conference on Image Analysis and Processing Palermo[C],2001. 584-588.
  • 3CAMPBELL J. Digital Image Classification Geography 4354 - Remote Sensing[EB/OL]. http://cegis.cgit.vt.edu/userwebs/mdougher/Webfiles/Classification_report.pdf.
  • 4JAIN AK, ROBERT P W DUIN, MAO J. Statistical Pattern Recognition: A Review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(1):4-37.
  • 5BLAKE CL, MERZ CJ. UCI repository of machine learning databases[DB/OL]. University of California, Irvine, Dept. of Information and Computer Sciences. http://www.ics.uci.edu/~mlearn/MLRepository.html,1996.

二级参考文献8

  • 1黄萱青 吴立德.独立于语种的文本分类方法[M].,2000.37-43.
  • 2鲁松 白硕 等.文本中词语权重计算方法的改进[M].,2000.31-36.
  • 3卜东波.聚类/分类理论研究及其在大模型文本挖掘的应用:博士论文[M].,2000..
  • 4黄萱菁,2000 International Conference on Multilingual Information Processing,2000年,37页
  • 5鲁松,2000 International Conference on Multilingual Information Processing,2000年,31页
  • 6卜东波,博士学位论文,2000年
  • 7Yang Yiming,Proceedings of ACMSIGIR Conference on Research and Development in Information Retrieval(SIGIR),1999年,42页
  • 8Yang Yiming,J Information Retrieval,1999年,1卷,1/2期,67页

共引文献292

同被引文献254

引证文献30

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部