期刊文献+

具有区域极点约束的无偏H_∞滤波

The Unbiased H_∞ Filtering with the Pole Constraint
下载PDF
导出
摘要 本文在无偏估计存在的条件下,给出了具有区域极点约束的无偏H∞滤波器的设计方法。该方法克服了传统滤波方法的局限性,既考虑了系统的输入输出鲁棒性能,也考虑了内部动态性能的要求,同时简化了滤波器的设计过程。以对河流污染物B.O.D含量的估计为例,仿真结果表明本方法具有较好的估计效果。 Under the unbiased condition, the design of the unbiased filter with the pole constraint is given. This method overcomes the limitations of classical filtering. It considers the robust performance of input and output, also the inner dynamic performance. And the unbiased H filtering approach simplifies the design processing. Using estimation for the B.O.D of the polluted river as the example, and results of simulation show this approach has a better estimation effect.
出处 《电测与仪表》 北大核心 2005年第4期4-7,共4页 Electrical Measurement & Instrumentation
基金 国家自然科学基金资助项目(60374027) 国家自然科学基金重点资助项目(60234030) 教育部科学研究重点资助项目(00038)
关键词 线性矩阵不等式 极点约束 滤波 无偏条件 linear matrix inequality pole constraint filtering unbiased condition
  • 相关文献

参考文献8

  • 1Watson, Jr., James T., Grigoriadis, Karolos M. Optimal unbiased filtering via linear matrix inequalities [J],Systems and Control Letters,1998, Vo.25, pp: 111-118.
  • 2Xu, Shengyuan, Chen, Tongwen, Robust Hfiltering for uncertain impulsive stochastic systems under sampled measurements[J],Automatica, 2003, Vo.39, pp: 509-516.
  • 3S. Boyd, L El G haoui, E. Feron, and V. Balakishnan, Linear Matrix Inequalities in System and Control Theory[M]. SIAM, Philadelphia,1994.
  • 4C.W. Scherer, P.Gahinet, and M.Chilali, Multi-objective outputfeedback control via LMI optimization[J]. IEEE Trans. Automat Cont.,1997, Vo.42, pp:896-911.
  • 5S. Bittanti , and F. A. Cuzzola. An LMI approach to periodic discrete-time unbiased filtering. Systems and Control Letters[J], 2001, Vo.42, pp: 21 - 25.
  • 6Singh M G and Hassan M. A closed loop hierarchical solution for the continuous time river pollution control problem[J].Automatic, 1976,12:261-264.
  • 7G.C. Goodwin and R.H. Middleton. The class of all stable unbiased state estimations[J]. System and Control Letters, 1989, Vo. 13, pp:161-163.
  • 8Pascal Gahinet, Arkadi Nemirovski, and Alan J.Laub. LMI control toolbox for use with MATLAB.http://www.mathwork.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部