期刊文献+

证据理论k-NN规则中确定相似度参数的新方法 被引量:8

A New Approach to Determine the Similarity Parameters in Evidence-Theoretic k-NN Rule
下载PDF
导出
摘要 本文提出了一种确定证据理论k NN分类规则中相似度参数的新方法.对于一个模式识别问题,我们首先为每一模式类求得一个参考最近邻距离,使其在最小错误率意义下将训练样本集中属于该模式类的样本与其他样本分离,然后根据所得参考最近邻距离计算相似度函数参数.该方法在训练集比较小、样本非高斯分布条件下仍然能够计算出比较准确的参数,使得相应的分类错误率较小,而且时间复杂度比L .M .Zouhal的方法低约4 8倍. This paper presents a new approach to determine the similarity parameters in the Evidence-Theoretic k-NN Classification Rule. Given a pattern recognition problem,we first compute a reference nearest neighbor distance to separate samples of one class from other samples with least error rate,and then calculate the similarity parameters based on the obtained distance. Under the condition of small scale samples with non-gaussian distribution,the proposed method can get more suitable parameters and thus reduce classification error rate.Furthermore,its computation complexity is 4-8 times lower than that of L.M.Zouhal's method.
出处 《电子学报》 EI CAS CSCD 北大核心 2005年第4期766-768,共3页 Acta Electronica Sinica
基金 国家自然科学主任基金(No.60441002) 大学重大项目基金(No.2003SZ002)
关键词 证据理论 基本概率赋值函数 k-近邻分类 evidence theory basic probability assignment function k-nearest neighbor classification
  • 相关文献

参考文献9

  • 1朱大奇,于盛林.基于D-S证据理论的数据融合算法及其在电路故障诊断中的应用[J].电子学报,2002,30(2):221-223. 被引量:129
  • 2孙怀江,胡钟山,杨静宇.基于证据理论的多分类器融合方法研究[J].计算机学报,2001,24(3):231-235. 被引量:25
  • 3G Rogova.Combining the results of several neural network classifiers[J].Neural Networks.1994,7(5):777-781.
  • 4T Denoeux.A k-nearest neighbor classification rule based on Dempster-Shafer theory[J].IEEE Trans on Systems,Man and Cybernetics.1995,25(05):804-813.
  • 5T Denoeux.A neural network classifier based on Dempster-Shafer theory[J].IEEE Trans on Systems,Man and Cybernetics A.2000,30(2):131-150.
  • 6S Petit-Renaud,T Denoeux.Nonparametric regression analysis of uncertain and imprecise data using belief functions[J].International Journal of Approximate Reasoning.2004,35(1):1-28.
  • 7K Fukunaga,T Flick.An optimal global nearest neighbour metric[J].IEEE Trans on Pattern Recognition and Machine Intelligence.1984,6(3):314-318.
  • 8K Urahama,Y Furukawa.Gradient descent learning of nearest neighbor classifiers with outlier rejection[J].Pattern Recognition.1995,28(5):761-768.
  • 9L M Zouhal,T Denoeux.An evidence-theoretic k-NN rule with parameter optimization[J].IEEE Trans on Systems,Man and Cybernetics C.1998,28(2):263-271.

二级参考文献9

共引文献152

同被引文献124

引证文献8

二级引证文献112

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部