摘要
In this paper, by considering the stochastic proces s of the busy period and the idle period, and introducing the unfinished work as a supplementary variable, a new vector Markov process was presented to study th e M/G/1 queue again. Through establishing and solving the density evolution equa tions, the busy-period distribution, and the stationary distributions of waitin g time and queue length were obtained. In addition, the stability condition of th is queue system was given by means of an imbedded renewal process.
In this paper, by considering the stochastic proces s of the busy period and the idle period, and introducing the unfinished work as a supplementary variable, a new vector Markov process was presented to study th e M/G/1 queue again. Through establishing and solving the density evolution equa tions, the busy-period distribution, and the stationary distributions of waitin g time and queue length were obtained. In addition, the stability condition of th is queue system was given by means of an imbedded renewal process.
基金
Project supported by the National Natural Science Foundation of China(Grant No.70171059)