期刊文献+

NON-DEGENERATE INVARIANT BILINEAR FORMS ON NONASSOCIATIVE TRIPLE SYSTEMS 被引量:3

NON-DEGENERATE INVARIANT BILINEAR FORMS ON NONASSOCIATIVE TRIPLE SYSTEMS
原文传递
导出
摘要 A bilinear form f on a nonassociative triple system T is said to be invariant if and only if f( abc ,d) = f(a, dcb ) = f(c, bad ) for all a,b,c,d ∈ T . (T ,f) is called a pseudo-metric triple system if f is non-degenerate and invariant. A decomposition theory for triple systems and pseudo-metric triple systems is established. Moreover, the ?nite-dimensional metric Lie triple systems are characterized in terms of the structure of the non-degenerate, invariant and symmetric bilinear forms on them.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第2期275-290,共16页 数学年刊(B辑英文版)
关键词 Triple system Lie triple system Bilinear form Lie algebra 2000 MR Subject Classication 17A40 李三元系统 双线性型 李代数 群论
  • 相关文献

参考文献17

  • 1Bordemann, M., Nondegenerate invariant bilinear forms on nonassociative algebras, Acta. Meth. Univ.Comenianae, Vol. LXVI, 2(1997), 151-201.
  • 2Bordemann, M., Invariant Bilinear Formen auf Endlich-dimensionalen Algebrea (in German), Diplomarbeit, Mathematische Fakultat, Universitat Freiburg, F.R.G., 1988.
  • 3Zhang, Z. X., Shi, Y. Q. & Zhao, L. N., Invariant symmetric bilinear forms on Lie triple systems,Comm. in Alg., 11(2002), 5563-5573.
  • 4Lister, W. G., A structure theory of Lie triple systems, Trans. Amer. Math. Soc., 72(1952), 217-242.
  • 5Meyberg, K., Lectures on Algebra and Triple System, The University of Virgina Charlottesville, 1972.
  • 6Jacobson, N., Lie Algebras, Interscience, New York, 1962.
  • 7Humphreys, J. E., Introduction to Lie Algebra and Representation Theory, Springer-Verlag, New York,1972.
  • 8Meng, D. J., Introduction to Semi-simple Lie Algebra (in Chinese), Beijing University Press, 1998.
  • 9Jacobson, N., Basic Algebra Ⅱ, San Francisco, 1980.
  • 10Bajo, Ⅰ. & Benayadi, S., Lie algebras admitting a unique quadratic structure, Comm. in Alg., 25(1997),2795-2805.

同被引文献1

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部