期刊文献+

叠层实体成型中提高激光切割精度的动力学补偿方法 被引量:3

Approach to the Improvement of Laser Cutting Accuracy for Laminated Solid Manufacture by Dynamic Compensation
下载PDF
导出
摘要 动力学因素,如摩擦力和惯性力,在叠层实体成型加工中常影响激光机床的切割精度。提出的动力学补偿方法结合了闭环位置控制和计算力矩控制两者的优点。既可以避免对名义轨迹的偏差,又可以补偿动力学因素对精度的影响。在每个原动件控制中,用附加的速度前馈来实现动力学补偿。多层前馈型神经网络用来实现机构的逆动力学模型。用周期函数,有限项傅立叶级数,作为激励函数来获取训练样本。复杂的动力学参数辨识过程成为神经网络权值的监督学习过程。实验结果表明,本文提出的方法对提高激光切割的轨迹精度和切口角度精度是有效的。 Some dynamic factors, such as friction and inertia forces, affect the cutting accuracy of laser machine in laminated solid manufacture. The proposed dynamic compensation method combines the advantages of closed-loop position control and computed torque control. The deviation from nominal trajectory is avoided and the effects of dynamic factors on cutting accuracy are compensated. The dynamic compensation is realized by velocity feed-forward for each actuator. Multilayer feed-forward neural network is employed to realize the inverse dynamics model. A periodic function, finite Fourier series, is used to activate the actuator for obtaining training samples. The complicated dynamic parameter identification process now becomes the learning process of neural network connecting weights under supervision. Experimental results have shown that the method is valid for improving the trajectory accuracy and tangent angle accuracy.
出处 《机械科学与技术》 CSCD 北大核心 2005年第4期484-487,共4页 Mechanical Science and Technology for Aerospace Engineering
关键词 叠层实体成型 激光切割 动力学补偿 神经网络 Laminated solid formation Laser cutting Dynamic compensation Neural network
  • 相关文献

参考文献8

  • 1Zong G, et al. Direct selective laser sintering of high temperature metals[A]. Proceedings of the Solid Freeform Fabrication Symposium[C], University of Texas at Austin, 1992:72~85.
  • 2Kumar C, Jones L, Roscoe I. Support generation for fused deposition modeling[A]. Proceedings of the Solid Freeform Fabrication Symposium[C], University of Texas at Austin, 1995:229-241.
  • 3Sachs E, Cima M J, Cornie J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model[J]. CIRP Annals,1990,39(1):210~214.
  • 4Sachs E M, et al. Progress on tooling by 3D printing conformal cooling dimensional control, surface finish and hardness[A]. Proceedings of the Solid Freeform Fabrication Symposium[C], University of Texas at Austin, 1997:115~123.
  • 5Griffin C, Daufenbach J, Mc S Millin. Solid freeform fabrication of functional ceramic components using a laminated object manufacturing technique[A]. Proceedings of the Solid Freedom Fabrication Symposium[C], University of Texas at Austin, 1994:17~24.
  • 6Lub J Y S, et al. On-line computation schemes for mechanical manipulators[J]. Transactions ASME, Journal of Dynamic Systems, Measurement and Control, 1980,102:69~76.
  • 7Otani K, et al. Dynamic parameter identification of an industrial robot and its application on trajectory controls[A]. Proceedings of International Conference on Intelligent Robots and Systems[C], July, 1992:990~997.
  • 8Swevers J, et al. Optimal robot excitation and identification[J]. IEEE Transaction on Robotics and Automation, 1997,13(5):730~740.

同被引文献11

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部