期刊文献+

投影体的宽度积分和仿射表面积 被引量:3

WIDTH-INTEGRALS OF PROJECTION BODIES AND AFFINE SURFACE AREA
下载PDF
导出
摘要 本文运用凸几何分析理论,建立了投影体的宽度积分和仿射表面积的一些新型Brunn-Minkowski 不等式,这些结果改进了Lutwak的几个有用的定理.作为应用,进一步给出了混合投影体极的Brunn- Minkowski型不等式. This paper establishes some new Brunn-Minkowski type inequalities for width-integrals of projection bodies and affine surface area by using convex geometric analysis theory, which improve Lutwak's several important theorems. As application, the Brunn-Minkowski inequality for polars of mixed projection bodies is obtained.
出处 《数学年刊(A辑)》 CSCD 北大核心 2005年第2期275-282,共8页 Chinese Annals of Mathematics
基金 国家自然科学基金(No.10271071)山东省高校中青年学术骨干基金(N0.200203)资助的项目.
关键词 凸体的宽度积分 仿射表面积 投影体的极 投影体的宽度积分 Width-integrals of convex body, Affine surface area, Polars of projection body, Width-integral of projection body
  • 相关文献

参考文献14

  • 1Ball, K., Volume ratios and a reverse isoperimetric inequality [J], J. London Math. Soc.,44(1991), 351-359.
  • 2Bourgain, J. & Milman, V., New volume ratio properties for convex symmetric bodies in Rn [J], Invent. Math., 88(1987), 319-340.
  • 3Gardner, R. J., Geometric Tomography [M], Cambridge University Press, Cambridge,1995.
  • 4Schneider, R., Convex Bodies: The Brunn-Minkowski Theory [M], Cambridge University Press, Cambridge, 1993.
  • 5Lutwak, E., Centroid bodies and dual mixed volumes [J], Proc. London Math. Soc.,60(1990), 365-391.
  • 6Lutwak, E., Mixed projection inequalities [J], Trans. Amer. Math. Soc., 287(1985),92-106.
  • 7Lutwak, E., Inequalities for mixed projection bodies [J], Trans. Amer. Math. Soc.,339(1993), 901-916.
  • 8Lutwak, E., Volume of mixed bodies [J], Trans. Amer. Math. Soc., 294(1986), 487-500.
  • 9Lutwak, E., Mixed affine surface area [J], J. Math. Anal. Appl., 125(1987), 351-360.
  • 10Lutwak, E., Width-integrals of convex bodies [J], Proc. Amer. Math. Soc., 53(1975),435-439.

同被引文献5

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部