期刊文献+

第二类积分方程的多尺度Galerkin快速算法

Multiscale Fast Method for Second Kind Integral Equations
下载PDF
导出
摘要 利用区间上具有消失矩性质的多尺度小波基底,构造Fredholm第二类积分方程Galerkin框架,提出相应的截断策略,并优化了收敛阶。 In this paper we make use of multiscale wavelets that have vanishing moment as trial space basis, and purpose Galerkin Scheme for second kind integral equation with weakly kernel. Through corresponding truncation strategy, we improve the order of convergence to almost optimal order and obtain almost optimal computional complexity at the same time.
出处 《广西师范学院学报(自然科学版)》 2005年第1期1-7,共7页 Journal of Guangxi Teachers Education University(Natural Science Edition)
关键词 Galerkin第二类积分方程 截断策略 多尺度小波 Galerkin integral euqation truncation strategy multiscale wavelet
  • 相关文献

参考文献7

  • 1Atkinson K E, Graham I, Sloan I. Piecewise continuous collocation for integral equations[J].SIAM Numer Anal, 1983,20:172-186.
  • 2Chen M, Chen Z, Chen G. Approximate Solutions of Operator Equations[M].World Scientific Publishing Co,1977.
  • 3Chen Z, Micchelli C A, Xu Y. The Petrov-Galerkin methods for second kind integral equations II: Multiwavelet scheme[J].Adv Comp Math, 1997,(7): 199-233.
  • 4Chen Z, Xu Y. The Petrov-Galerkin and iterated Petrov-Galerkin methods for second kind integral equations[J].SIAM J Numer Anal, 1998,35: 406-434.
  • 5Chen Z, Micchelli C A, Xu Y. The fast collocation method for second kind integral equations[J]. SIAM J Numer Anal, 2002,40:344-375.
  • 6Micchelli C A, Xu Y. Using the matrix refinement equation for the construction of wavelets on invariant sets[J].Appl Comp Harmonic Anal, 1994,(1):391-401.
  • 7Micchelli C A, Xu Y,Zhao Y. Wavelet Galerkin methods for second-kind integral equations[J]. J Comp Appl Math, 1997,86:251-270.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部