期刊文献+

基于粒子滤波器的多机动目标跟踪贝叶斯滤波算法研究 被引量:3

A Bayesian Approach to Tracking Maneuvering Multiple Targets Using Particle Filters
下载PDF
导出
摘要 提出了一种新的基于粒子滤波器的贝叶斯滤波算法,用于在非线性非高斯假设下跟踪多机动目标.对目标动态行为的已知描述构成了贝叶斯的先验知识.近来时序蒙特卡罗技术的发展,特别是粒子滤波器算法,使采用一个目标状态的集合对贝叶斯模型的后验知识进行建模和跟踪成为可能,这个集合可以看作是这个后验密度函数的采样集合.这种新的贝叶斯滤波算法是粒子滤波器与划分采样技术和假设计算的有机结合.在与SIR/MCJPDA算法的比较仿真研究中,证明该算法能够提高系统的跟踪性能. A new Bayesian approach to tracking multiple maneuvering targets under nonlinear and nonGaussian assumptions is presented. The prior is a description of the dynamic behavior we expect for the targets. Resent advances in sequential Monte Carlo techniques, specifically particle filter algorithm,allow us to model and track the posterior distribution defined by Bayesian model using a collection of targets states that can be viewed as samples from the posterior of interest. The proposed algorithm is a combination of the partition sampling technique and hypothesis calculations with the particle filter. In a simulation comparison with SIR/MCJPDA, it is proved that our approach yields performance improvements.
机构地区 哈尔滨工业大学
出处 《战术导弹技术》 北大核心 2005年第2期13-19,共7页 Tactical Missile Technology
关键词 贝叶斯滤波 非线性/非高斯模型 多机动目标跟踪 粒子滤波器 划分采样 Bayesian filter nonlinear/non-Gaussian model maneuvering multi-target tracking particle filter partition sampling.
  • 相关文献

参考文献11

  • 1Anderson B D O, Moore J B. Optimal Filtering[M]. Prentice Hall, Englewood Cliffs, NJ, 1979.
  • 2Gordon N, Salmond D, Smith A. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation[J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140: 107~113.
  • 3Carpenter J, Clifford P, and Fearnhead P. Improved Particle Filter for Non-linear Problems[J]. IEEE Proceedings on Rader and Sonar Navigation, 1999, 146(1): 2~7.
  • 4Kalsson R, Bergman N. Auxiliary Particle Filters for Tracking a Maneuvering Target[C]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000:3891~3895.
  • 5Angelova D S, Semerdijev Tz A, Jilkov V P, Semerdjiev E A. Application of a Monte Carlo Method for Tracking Maneuvering Target in Clutter [J]. Mathematics and Computers in Simulation, 2001, 55:15~23.
  • 6N. Gordon. A Hybrid Bootstrap for Target Tracking in Clutter[J]. IEEE Trans. on Aerospace and Electronic Systems. 1997, 33(1):353~358.
  • 7A. Doucet, N. J. Gordon, V. Krishnamurthy. Particle Filters for State Estimation of Jump Markov Linear Systems[J]. IEEE Trans. on Signal Processing,2001, 49(3):613~624.
  • 8M. Orton, W. Fitzgerald. A Bayesian Approach to Tracking Multiple Targets Using Sensor Arrays and Particle Filters[J]. IEEE Trans. on Signal Processing,2002, 50(2):216~223.
  • 9C. Hue, J. P. Le Cadre, P. Perez. Tracking Multiple Objects with Particle Filtering[J]. IEEE Trans. on Aerospace and Electronic Systems,2002, 38(3):791~812.
  • 10D. Schulz, W. Burgard, D. Fox, A. B. Cremers. Tracking Multiple Moving Targets with a Mobile Robot Using Particle Filters and Statistical Data Association[C]. In Proceedings of IEEE International Conference on Robotics and Automation, Seoul, Korea, May, 2001:1665~1670.

二级参考文献7

  • 1Anderson B D O, Moore J B. Optimal filtering [M]. Prentice Hall, Englewood Cliffs, NJ, 1979.
  • 2Gordon N, Salmond D, Ewing C. Bayesian state estimation for tracking and guidance using the bootstrap filter [J]. Journal of Guidance, Control and Dynamics, 1995,18(6): 1434-1443.
  • 3Gordon N, Salmond D, Smith A. Novel approach to nonlinear/non-Gaussian Bayesian state estimation[J]. IEE Proceedings on Radar and Signal Processing, 1993, 140: 107-113.
  • 4Carpenter J, Clifford P, Fearnhead P. Improved particle filter for non-linear problems [J]. IEE Proceedings on Rader and Sonar Navigation, 1999, 146(1): 2-7.
  • 5Karlsson R, Bergman N. Auxiliary particle filters for tracking a maneuvering target [J]. Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, 2000. 3891-3895.
  • 6Bar-Shalom Y, Li X R. Estimation and tracking: principles, techniques, and software [M]. Artech Houses, 1993.
  • 7吴森堂,徐广飞,汤勇.结构随机跳变系统的自举滤波方法[J].航空学报,1998,19(2):185-189. 被引量:7

共引文献4

同被引文献12

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部