期刊文献+

ZnS中Te等电子中心的时间分辨光谱研究 被引量:1

Time-resolved photoluminescence of Te isoelectronic center in ZnS
原文传递
导出
摘要 用时间分辨光谱研究了很大的Te组分范围内的ZnS1 -xTex(x =0 0 0 5— 0 85 )合金的发光动力学特性 ,结果表明 :不同形态的Te等电子中心具有不同的辐射复合寿命 ,从几个ns到几十个ns的范围内变化 ,当x=0 15左右时 ,寿命达到最大值 (约 4 0ns) .其物理机理源于不同的Te等电子中心具有不同的局域化特性 .当Te组分较小时 ,等电子中心从Te1 逐渐演变到Te2 ,Te3或Te4 时 ,相应发光寿命增加 ,表现出不断增强的激子发光局域化特性 ;而当Te组分较大时 ,Te原子团变得较大 ,其局域势与基体原子势的相互作用增强 ,等电子中心的局域化特性减弱 ,而基体价带扩展态特征变得明显起来 ,相应发光寿命逐渐减小 .还研究了激子束缚能随Te组分的变化以及发光强度随温度的变化关系 ,所得结果进一步支持了时间分辨光谱研究所得到的结论 . The recombination dynamics of localized exciton in ZnS1-x Te-x ternary alloys has been investigated by time-resolved photoluminescence (PL) in a large Te concentration range from 0.005 to 0.85. It is found that the radiative recombination lifetimes of different Te isoelectronic centers show a significant difference, varying from a few nanoseconds to tens of nanosecond. The lifetime reaches a maximum of ∼ 40 ns in the sample of x = 0.15. The present results could be understood in terms of the exciton localization effect. When the Te concentration is small, the Te isoelectronic centers evolve gradually from a single Te impurity (Te-1) to the Te clusters (Te-n). The exciton localization is enhanced, resulting in the increase of exciton recombination lifetime. When the Te concentration is further increased, the Te clusters (Te-n) become large enough to hybridize the Te localized states and the host valence band states. Therefore I the excitons bound to Te isoelectronic centers become more or less delocalized, resulting in a shorter lifetime. Furthermore, the concentration dependence of the exciton binding energy and the PL intensity variation with temperature have been mearsured. The results further confirm the above conclusion.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2005年第5期2272-2276,共5页 Acta Physica Sinica
基金 国家重点基础研究专题经费 (批准号 :G0 0 1CB3 0 95 ) 国家自然科学基金 (批准号 :10 3 3 40 40 10 2 740 81)资助的课题 .~~
关键词 硫化锌 等电子中心 时间分辨光谱 局域态 半导体 ZnS isoelectronic center time-resolved photoluminescence exciton localization
  • 相关文献

参考文献17

  • 1Hjalmarson H P, Vogl P, Wolford D J and Dow J D 1980 Phys.Rev. Lett. 44 810.
  • 2Shan Wet al Phys. Rev. Lett. 82 1221.
  • 3Wei S H and Zunger A 1996 Phys. Rev. Lett. 76, 664.
  • 4Walukiewicz W et al 2000 Phys. Rev. Lett. 85 1552.
  • 5Wu J et al 2003 Phys. Rev. B, 67 35207.
  • 6Luo X D, Huang J S, Xu Z Y, Yang C L, Liu J, Ge W K, Zhang Y, Mascarenhas A, Xin H P and Tu C W 2003 Appl. Phys. Lett.82 1697.
  • 7Buyanova I A, Pozina A, Bergman J P, Chen W M, Xin H P and Tu C W 2002 Appl. Phys. Lett. 81 52.
  • 8Li J B and Wang L W 2003 Phys. Rev. B 67 205319.
  • 9Li J B and Wang L W 2003 Phys. Rev. B 67 033102.
  • 10Fang Z L, Li G H, Liu N Z, Zhu Z M, Han H X, Ding K, Ge W K and Sou I K 2002 Phys. Rev. B 66 085203.

同被引文献31

  • 1贺亚峰,董丽芳,刘富成,范伟丽.介质阻挡放电中的局域态六边形结构[J].物理学报,2005,54(9):4236-4239. 被引量:5
  • 2马松山,徐慧,刘小良,郭爱敏.DNA分子链电子结构特性研究[J].物理学报,2006,55(6):3170-3174. 被引量:4
  • 3Vahala K J 2003 Nature 424 839.
  • 4Hirschman K D, Tsybeskov L, Duttagupta S P, Fauchet P M 1996 Nature (London) 384 338.
  • 5Fauchet P M, Ruan J, chen H, Pavesi L, Negro L Dal, Cazzaneli M, Elliman R G, Smith N, Smoc M, Luther-Davies B 2005 Optical Materials 27 745.
  • 6Chen S, Qian B, Chen K J, Zhang X G, Xu J, Ma Z Y, Li W, Huang X F 2007 Appl. Phys. Lett. 90 174101.
  • 7Yang Y, Wang C, Yang R D, Li L, Xiong F, Bao J M 2009 Chin. Phys. B 18 4906.
  • 8Wolkin M V, Jorne J, Fauchet P M 1999 Phys. Rev. Lett. 82 197.
  • 9Huang W Q, Huang Z M, Miao X J 2012 Chin. Phys. B 21 094207.
  • 10Huang W Q, Huang Z M, Cheng H Q, Miao X J, Shu Q, Liu S R, Qin C J, 2012 Appl. Phys. Lett. 101 171601.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部