期刊文献+

UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS

UNSYMMETRICAL NONLINEAR BENDING PROBLEM OF CIRCULAR THIN PLATE WITH VARIABLE THICKNESS
下载PDF
导出
摘要 Firstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system. This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied. Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception. Firstly, the cross large deflection equation of circular thin plate with variable thickness in rectangular coordinates system was transformed into unsymmetrical large deflection equation of circular thin plate with variable thickness in polar coordinates system. This cross equation in polar coordinates system is united with radical and tangential equations in polar coordinates system, and then three equilibrium equations were obtained. Physical equations and nonlinear deformation equations of strain at central plane are substituted into superior three equilibrium equations, and then three unsymmetrical nonlinear equations with three deformation displacements were obtained. Solution with expression of Fourier series is substituted into fundamental equations; correspondingly fundamental equations with expression of Fourier series were obtained. The problem was solved by modified iteration method under the boundary conditions of clamped edges. As an example, the problem of circular thin plate with variable thickness subjected to loads with cosin form was studied. Characteristic curves of the load varying with the deflection were plotted. The curves vary with the variation of the parameter of variable thickness. Its solution is accordant with physical conception.
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第4期423-430,共8页 应用数学和力学(英文版)
基金 ProjectsupportedbytheNaturalScienceFoundationofGansuProvinceofChina(No.ZS021_A25_ 007_Z)
关键词 variable thickness unsymmetrical bending modified iteration method DEFLECTION variable thickness unsymmetrical bending modified iteration method deflection
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部