摘要
给出了系数矩阵为方阵的复线性方程组为ray可解、非负ray可解及全非零ray可解等的图论特征刻画,得到了这些方程组的解的ray模式的图论表述.应用这些结论还给出了ray S*-阵和ray S-阵的图论特征刻画,及其他若干类特殊的复线性方程组的ray可解性条件.
We gave the graph theoretical characterizations of the ray solvable,nonnegative ray solvable and totally nonzero ray solvable complex linear systems with square coefficient matrix,and obtained the graph theoretical descriptions of the ray patterns of the solutions of these types of linear systems.As applications of these results,we also gave the graph theoretical characterizations of the ray S*-matrices and ray S-matrices,and the ray solvable conditions on some other special classes of complex linear systems.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2005年第4期530-534,共5页
Journal of Tongji University:Natural Science
基金
国家自然科学基金资助项目(10331020)