期刊文献+

热力参数软仪表在电厂热工过程中的应用 被引量:2

Thermal parameter soft sensor applied to power plants
下载PDF
导出
摘要 针对火电厂热力参数失效、优化运行的问题,提出了基于支持向量机的软仪表.仿真表明,支持向量机方法与较为典型的RBF神经网络相比有着明显的优势,这样的热力参数软仪表的建立对于电厂的经济运行有着重大的意义. A SVM-based soft sensor, which can solve the problem of the invalidation of thermal parameters and optimal running is put forward. Experiments show that the support vector machine (SVM) method has great advantage than radial basis function neural networks. We also discuss that the thermal parameters soft sensor is of importance for economic running in power plants.
出处 《武汉大学学报(工学版)》 CAS CSCD 北大核心 2005年第2期99-101,共3页 Engineering Journal of Wuhan University
基金 "十五"国家科技攻关计划资助项目(2001 BA201A04).
关键词 支持向量机 径向基神经网络 热工过程 软仪表 经济性监测 support vector machine (SVM) radial basis function (RBF) neural networks thermal power process soft sensor economic monitoring
  • 相关文献

参考文献6

  • 1Brosilow C B, Joseph B. Inferential control of process [J]. AIChE J., 1978, 24(3):485-509.
  • 2Smola A J, Scholkopf B. A tutorial on support vector regression [A]. Produced as Part of the ESPRIT Working GrouPin Neural and Computation LearningⅡ, NeuroCOLT2 Technical Report Series NC2-TR-1998-030 [R], 1998.
  • 3Vapnik V N. Statistical learning theory [M]. New York:John Wiley and Sons, 1998.
  • 4Wang X, Luo R, Shao H. Designing a soft sensor for distillation column with the fuzzy distributed radial basis function neural networks [J]. Proceedings of the 35th IEEE Conference on Decision and Control, 1996(2):1714-1719.
  • 5Luo J, Shao H. Soft sensor modeling using neurofuzzy system based on rough set theory [M]. Proceedings of the American Control Conference, 2002. 543-548.
  • 6McAvoy T J. Contemplative stance for chemical process [J]. Automatica, 1992, 28(2):441-442.

同被引文献64

引证文献2

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部