期刊文献+

一种病理诊断知识获取的RS混合算法 被引量:2

Research on Extracting Medical Diagnosis Rules Mining Based on Rough Sets Theory
下载PDF
导出
摘要 针对医学诊断知识获取问题,提出了基于Rough Sets理论的知识获取方法,利用该理论对数据进行分析,推理出可能规则,并提出了一种概率优化规则。通过实例分析,具体说明了该方法的实现步骤,包括连续信息系统的离散化、信息系统的约简、决策规则提取、决策模型生成等,讨论了知识处理的完整过程,能够有效地解决专家系统中知识获取的瓶颈问题。为人工智能技术在医学诊断领域的应用提供了新的思路。 Analyze how to extract medical diagnosis rules from medical cases. Based on the rough set theory, a way to acquiring knowledge was bring forward. Using this theory, the data was analyzed, possible rules was proposed, and a optimized probability formula was showed. By analyzing instances, the implement step of the way explained, including discreting continuous information system, reducting information system, acquiring decision rules and generating decision model, and so on. In the end, the whole process of knowledge acquisition was discussed, and this option can effective solve the choke point problem of acquiring knowledge in expert system. At the same time, it also provides new brainchild to solve the artificial intelligence technology's application in the field of medicinal diagnosing.
出处 《科技通报》 2005年第3期314-320,359,共8页 Bulletin of Science and Technology
基金 国家自然科学基金资助课题(60373062) 湖南省卫生厅科技基金资助项目(2001-Y89)
关键词 软件与算法 数据挖掘 ROUGHSET 医学诊断规则 连续信息系统 离散化 规则获取 software and arithmetic data mine, rough sets, medicine diagnose rule, continuous information system, discretization, acquisition rules
  • 相关文献

参考文献10

  • 1Z Pawlak. Rough sets[J]. International Journal of Information and Computer Science. 1982, 11(5): 341-356.
  • 2Missaoui R. Extracting expert and approximate rules formdatabases [J]. Corum. Of ACM. 1995, 38(11): 201-211.
  • 3Chen C C Rough set boundaries as a tool for learning rulesfrom examples [J]. In methodologies for Intelligent Systems. North-Holland, New York, 1989.281-288.
  • 4Ras Z W. Learning concept in rough environment: an optimization procedure[J], iN methodologies for Intelligent Systems, North-Holland, New York, 1987.256-263.
  • 5GRZYNALA Busse J W. Learning from examples on rough multi-sets [J]. In Methodologies for Intelligent Systems,North-Holland, New York, 1987. 268-272.
  • 6Shah N. An incremental Learning algorithm for constructing decision rules[R]. Technical CS 93 02, Department of Computer Science, University of Regina, Canada.1993.
  • 7Slowinski R, et al. RoughDAS and RoughCLASS software implications of the rough sets approach[A]. Ziarko W. Rough Sets, Fuzzy Sets and Knowledge Discovery [C]. Sastatchewan: 1999.221-229.
  • 8Yao Y Y. Constructive and algebraic methods of the theory of rough sets [J]. Journal of Information Sciences,1998, 109(1): 21-47.
  • 9蒋伟进,金可音,沈智慧,王润球.基于MA和BP的虚拟企业动态建模及关键技术研究[J].信息与控制,2002,31(4):329-335. 被引量:25
  • 10Jiang Weijin. Research and Implementation of Distributed MSP Algorithm Based on GA & MAS [J].Computer Science, 2002, 29(9): 443-447.

二级参考文献6

共引文献24

同被引文献15

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部