期刊文献+

微分代数方程系统的一类新的归约方法

New reduction method for the differential-algebraic system
下载PDF
导出
摘要 针对高阶(k≥2 )微分代数方程系统的归约问题,给出并证明了它的一类新的归约方法。该方法通过构造相容映射簇,将高阶微分代数方程系统逐步归约成低阶微分方程系统,最终将其转换成系统构形空间上的常微分方程。同时给出其各阶寂点的充分条件。 Aimed at the problem of the differential-algebraic systems with higher index (k greater than or equal 2), a new explicit method of its reduction is given. By construction of admissible mapping families, this method can reduce the higher index DAEs to lower index DAEs effectively. Finally to ordinary differential equations based on its configuration space. In the mean time, some sufficient conditions of impasse points are presented. Lastly, two examples are given to make known its effects.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第4期692-695,共4页 Systems Engineering and Electronics
关键词 微分代数系统 流形 归约 平衡点 向量场 differential-algebraic-systems submanifold reduction equilibrium point vector-field
  • 相关文献

参考文献10

  • 1Venkatasubramanian V, Schattler H, Zaborszky J. Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load[J]. IEEE Tran. on Automatic Control, 1992,37(11) :1717- 1733.
  • 2Zheng Q. Hopf bifurcation in electronic circuits, in modeling and simulation of electronic circuits and semiconductor devices basel[J].Birkhauser, 1990.44 - 61C.
  • 3Venkatssubramanian V, Schattlar H, Zaboorszky J. Local bifurcation and fessibility regions in differential-algebraic systems [J]. IEEF.Trans. on Automatic Control, 1995, 40(12): 1992 - 2013.
  • 4Chua Leon O, Deng Anchang. Impasse points-part Ⅱ: analytical aspects[J]. International J. of Circuits and Applications, 1989,17:271 - 282.
  • 5Sebastian Reich. On the local qualitative behavior of differential-algebraic equation[J]. Circuit Systems Signal Process, 1995,14(4):427 - 443.
  • 6Venkatasubramanian V, Schattler H, Zaborszky J. Voltage dynamics: study of a generator with voltage control, transmission, and matched MW load[J]. IEEE Tran. on Automatic Control, 1992,37(11) :1717- 1733.
  • 7Zheng Q. Hopf bifurcation in electronic circuits, in modeling and simulation of electronic circuits and semiconductor devices basel[J].Birkhauser, 1990.44 - 61C.
  • 8Venkatssubramanian V, Schattlar H, Zaboorszky J. Local bifurcation and fessibility regions in differential-algebraic systems [J]. IEEF.Trans. on Automatic Control, 1995, 40(12): 1992 - 2013.
  • 9Chua Leon O, Deng Anchang. Impasse points-part Ⅱ: analytical aspects[J]. International J. of Circuits and Applications, 1989,17:271 - 282.
  • 10Sebastian Reich. On the local qualitative behavior of differential-algebraic equation[J]. Circuit Systems Signal Process, 1995,14(4):427 - 443.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部