期刊文献+

随机可变时滞系统的渐近稳定性 被引量:1

Asymptotic stability of stochastic systems with variable delay
下载PDF
导出
摘要 讨论了一类随机可变时滞系统解的渐近稳定性。应用It 公式、半鞅收敛定理与多个Lyapunov函数建立了这类随机可变时滞系统渐近稳定性的有效判据,使实际应用中构造Lyapunov函数更为方便。同时也说明了结果包含经典的随机系统稳定性结果为其特殊情况。与经典的随机稳定性理论相比,所建立的稳定性结果无须LV负定,充分利用了随机扰动项的作用,并且从理论上解释了一个不稳定的系统有时加入适当随机扰动后反而稳定。最后。 Asymptotic stability of the solution to a class of stochastic systems with variable delay is discussed. And effective criteria on stochastic asymptotic stability for the systems are established by using Ito formula, semi-martingale convergence theorem and some Lyapunov functions, which enable us to construct the Lyapunov functions much more easily in application. It is shown that the well-known classical theorem on stochastic asymptotic stability is a special case of more general results obtained. Compared with the classical stochastic stability results, the stability criteria established make the best use of the effects of stochastic disturbed term in stochastic systems and cancel the requirement of the negative definite of LV. Furthermore, it is shown theoretically that an unstable system, which is disturbed by stochastic noise, will become stable sometimes. In the end, an example is given for illustration.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第4期700-703,共4页 Systems Engineering and Electronics
基金 国家自然科学基金 (60 0 740 0 8 60 4740 11) 湖北省自然科学基金 (2 0 0 4ABA0 5 5 )资助课题
关键词 随机可变时滞系统 渐近稳定 LYAPUNOV函数 ITO公式 半鞅收敛定理 stochastic system with variable delay asymptotic stability Lyapunov function It formula semi-martingale convergence theorem
  • 相关文献

参考文献12

  • 1Hale J K,Lunel S M V.Introductiontofunctional differential equations[M].New York/Berlin:Springer-Verlag,1993.
  • 2Arnold L. Stochastic differential equations: theory and applications [M]. New York: Wiley, 1972.
  • 3Mao X. Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions[J]. J. Math. Anal.Appl. 2001, 260:325-340.
  • 4Kolmanovskii V B, Nosov V R. Stability of functional differential equations[M]. New York: Academic Press, 1986.
  • 5Mao X. Stochastic differential equations and applications[M]. England: Horwood, 1997.
  • 6Lipster R S, Shiryayev A N. Theory of martingales[M]. Chichester, UK: Horwood, 1989.
  • 7Hale J K,Lunel S M V.Introductiontofunctional differential equations[M].New York/Berlin:Springer-Verlag,1993.
  • 8Arnold L. Stochastic differential equations: theory and applications [M]. New York: Wiley, 1972.
  • 9Mao X. Some contributions to stochastic asymptotic stability and boundedness via multiple Lyapunov functions[J]. J. Math. Anal.Appl. 2001, 260:325-340.
  • 10Kolmanovskii V B, Nosov V R. Stability of functional differential equations[M]. New York: Academic Press, 1986.

同被引文献11

  • 1Aziz-Alaoui M A, Okiye M D. Boundeness and global stability for predator-prey model with modified Lesile-Gower and Holling- type Ⅱ schemes [J]. Applied Mathematics Letters, 2003, 16 (7) :1069 - 1075.
  • 2Song X Y, Li Y F. Dynamic behaviors of the periodic predatorprey model with modified Leslie-Gower Holling Ⅱ schemes and impusive effect[J]. Nonliear Analysis: Real world Applications ,2008,9(1) :64 - 79.
  • 3Nindjin A F, Aziz-Alaoui M A, Cadivel M. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with time delay[J].Nonlinear Analysis: Real World Applications ,2006,7(5) : 1104 - 1118.
  • 4Yafia R, Adnani F E, Alaoui H F. Limit cycle and numerical simulations for small and large delays in a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes[J]. Nonlinear Analysis : Real World Applications, 2008,9(5) :2055 - 2067.
  • 5Khasminskii R Z, Klebaner F C. Long term behavior of solution of the Lotka-Volterra system under small randomperturbbations[J].The Annals of Applied Probability, 2001,11 (3) : 952 - 963.
  • 6Mao X R, Marion G, Renshaw E. Environmental Brownian noise suppresses explosions in population dynamics[J]. Stochas tic Process,2002,97(1) :95 - 110.
  • 7Bahar A, Mao X R. Stochastic delay Lotka-Volterra model[J]. Journal of Mathematical Analysis and Applications, 2004,292(2) :364 - 380.
  • 8Xu Y, Wu F K, Tan Y M. Stochastic Lotka-Volterra system with infinite delay[J]. Journal of Computational and Applied Mathematics, 2009,232(2) :472 - 480.
  • 9Ji C Y, Jiang D Q, Shi N Z. Analysis of a predator-prey model with modified Leslie-Gower and Holling-type Ⅱ schemes with stochastic perturbation [J].Journal of Mathematical and Applications, 2009,359 (2) : 482 - 498.
  • 10Mao X R. Stochastic differential equations and applications[M].Horwood, Chichester,1997:36 - 51.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部