摘要
从理论上给出有限样本下模型选择的方法,详细讨论了样本噪声对模型选择的影响,提出了一种次优模型选择算法,并进一步给出了一种推挽式模型选择算法,它能够有效地提高模型选择的学习速度。两种算法具有很强的抗噪声能力,预测模型也具有很好的推广性。最后通过具体数值试验验证了上述理论和方法的可行性和优越性。
The method of model selection with limited samples is given in theory, and the noise's effect on the model selection is discussed. A suboptimal algorithm for model selection is proposed, then a push-pull algorithm for model selection is further presented, which can improve the learning speed of model selection effectively. The two algorithms have excellent anti-noise performance, and the prediction model has strong ability of generalization. The reliability and advantage of the above theory and method are illustrated through tests.
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2005年第4期730-733,共4页
Systems Engineering and Electronics
基金
航空基金项目资助课题 (0 1C5 2 0 15 )
关键词
模型选择
算法
统计学习理论
机器学习
model selection
algorithm
statistical learning theory
machine learning