期刊文献+

有限样本下模型选择理论与方法研究

Theory and method of model selection under limited samples
下载PDF
导出
摘要 从理论上给出有限样本下模型选择的方法,详细讨论了样本噪声对模型选择的影响,提出了一种次优模型选择算法,并进一步给出了一种推挽式模型选择算法,它能够有效地提高模型选择的学习速度。两种算法具有很强的抗噪声能力,预测模型也具有很好的推广性。最后通过具体数值试验验证了上述理论和方法的可行性和优越性。 The method of model selection with limited samples is given in theory, and the noise's effect on the model selection is discussed. A suboptimal algorithm for model selection is proposed, then a push-pull algorithm for model selection is further presented, which can improve the learning speed of model selection effectively. The two algorithms have excellent anti-noise performance, and the prediction model has strong ability of generalization. The reliability and advantage of the above theory and method are illustrated through tests.
出处 《系统工程与电子技术》 EI CSCD 北大核心 2005年第4期730-733,共4页 Systems Engineering and Electronics
基金 航空基金项目资助课题 (0 1C5 2 0 15 )
关键词 模型选择 算法 统计学习理论 机器学习 model selection algorithm statistical learning theory machine learning
  • 相关文献

参考文献9

  • 1张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2276
  • 2Spall J C. Implementation of the simultaneous perturbation algorithm for stochastic optimization[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(3): 817- 823.
  • 3Hemant Ishwaran, Lancelot F, Jiayang Sun. Bayesian model selection in finite mixtures by marginal density decompositions[J]. Journal of the American Statistical Association , 2001, 96(456): 1316- 1332.
  • 4Cherkassky V, Shao X, Mulier F M, et al. Model complexity control for regression using VC generalization bounds [J]. IEEE Trans. on Neural Networks, 1999, 10(5): 1075-1089.
  • 5Wood S N. Modelling and smoothing parameter estimation with multiple quadratic penalties[J]. Statist J R. Soc. B, 2000, 62(1): 413-428.
  • 6Spall J C. Implementation of the simultaneous perturbation algorithm for stochastic optimization[J]. IEEE Trans. on Aerospace and Electronic Systems, 1998, 34(3): 817- 823.
  • 7Hemant Ishwaran, Lancelot F, Jiayang Sun. Bayesian model selection in finite mixtures by marginal density decompositions[J]. Journal of the American Statistical Association , 2001, 96(456): 1316- 1332.
  • 8Cherkassky V, Shao X, Mulier F M, et al. Model complexity control for regression using VC generalization bounds [J]. IEEE Trans. on Neural Networks, 1999, 10(5): 1075-1089.
  • 9Wood S N. Modelling and smoothing parameter estimation with multiple quadratic penalties[J]. Statist J R. Soc. B, 2000, 62(1): 413-428.

二级参考文献1

共引文献2275

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部